rust-by-practice/solutions/result-panic/result.md

3.7 KiB

use std::num::ParseIntError;

fn multiply(n1_str: &str, n2_str: &str) -> Result<i32, ParseIntError> {
    let n1 = n1_str.parse::<i32>();
    let n2 = n2_str.parse::<i32>();
    Ok(n1.unwrap() * n2.unwrap())
}

fn main() {
    let result = multiply("10", "2");
    assert_eq!(result, Ok(20));

    let result = multiply("4", "2");
    assert_eq!(result.unwrap(), 8);

    println!("Success!")
}
use std::num::ParseIntError;

// IMPLEMENT multiply with ?
// DON'T use unwrap here
fn multiply(n1_str: &str, n2_str: &str) -> Result<i32, ParseIntError> {
    let n1 = n1_str.parse::<i32>()?;
    let n2 = n2_str.parse::<i32>()?;
    Ok(n1 * n2)
}

fn main() {
    assert_eq!(multiply("3", "4").unwrap(), 12);
    println!("Success!")
}
use std::fs::File;
use std::io::{self, Read};

fn read_file1() -> Result<String, io::Error> {
    let f = File::open("hello.txt");
    let mut f = match f {
        Ok(file) => file,
        Err(e) => return Err(e),
    };
    
    let mut s = String::new();
    match f.read_to_string(&mut s) {
        Ok(_) => Ok(s),
        Err(e) => Err(e),
    }
}

fn read_file2() -> Result<String, io::Error> {
    let mut s = String::new();

    File::open("hello.txt")?.read_to_string(&mut s)?;

    Ok(s)
}

fn main() {
    assert_eq!(read_file1().unwrap_err().to_string(), read_file2().unwrap_err().to_string());
    println!("Success!")
}
use std::num::ParseIntError;

fn add_two(n_str: &str) -> Result<i32, ParseIntError> {
   n_str.parse::<i32>().map(|num| num +2)
}

fn main() {
    assert_eq!(add_two("4").unwrap(), 6);

    println!("Success!")
}
use std::num::ParseIntError;

fn add_two(n_str: &str) -> Result<i32, ParseIntError> {
   n_str.parse::<i32>().and_then(|num| Ok(num +2))
}

fn main() {
    assert_eq!(add_two("4").unwrap(), 6);

    println!("Success!")
}
use std::num::ParseIntError;

// With the return type rewritten, we use pattern matching without `unwrap()`.
// But it's so Verbose..
fn multiply(n1_str: &str, n2_str: &str) -> Result<i32, ParseIntError> {
    match n1_str.parse::<i32>() {
        Ok(n1)  => {
            match n2_str.parse::<i32>() {
                Ok(n2)  => {
                    Ok(n1 * n2)
                },
                Err(e) => Err(e),
            }
        },
        Err(e) => Err(e),
    }
}

// Rewriting `multiply` to make it succinct
// You  MUST USING `and_then` and `map` here
fn multiply1(n1_str: &str, n2_str: &str) -> Result<i32, ParseIntError> {
    // IMPLEMENT...
    n1_str.parse::<i32>().and_then(|n1| {
        n2_str.parse::<i32>().map(|n2| n1 * n2)
    })
}

fn print(result: Result<i32, ParseIntError>) {
    match result {
        Ok(n)  => println!("n is {}", n),
        Err(e) => println!("Error: {}", e),
    }
}

fn main() {
    // This still presents a reasonable answer.
    let twenty = multiply1("10", "2");
    print(twenty);

    // The following now provides a much more helpful error message.
    let tt = multiply("t", "2");
    print(tt);

    println!("Success!")
}
use std::num::ParseIntError;

// Define a generic alias for a `Result` with the error type `ParseIntError`.
type Res<T> = Result<T, ParseIntError>;

// Use the above alias to refer to our specific `Result` type.
fn multiply(first_number_str: &str, second_number_str: &str) -> Res<i32> {
    first_number_str.parse::<i32>().and_then(|first_number| {
        second_number_str.parse::<i32>().map(|second_number| first_number * second_number)
    })
}

// Here, the alias again allows us to save some space.
fn print(result: Res<i32>) {
    match result {
        Ok(n)  => println!("n is {}", n),
        Err(e) => println!("Error: {}", e),
    }
}

fn main() {
    print(multiply("10", "2"));
    print(multiply("t", "2"));
}