// TryFrom is a simple and safe type conversion that may fail in a controlled way under some circumstances. // Basically, this is the same as From. The main difference is that this should return a Result type // instead of the target type itself. // You can read more about it at https://doc.rust-lang.org/std/convert/trait.TryFrom.html use std::convert::{TryInto, TryFrom}; #[derive(Debug)] struct Color { red: u8, green: u8, blue: u8, } // I AM NOT DONE // Your task is to complete this implementation // and return an Ok result of inner type Color. // You need create implementation for a tuple of three integer, // an array of three integer and slice of integer. // // Note, that implementation for tuple and array will be checked at compile-time, // but slice implementation need check slice length! // Also note, that chunk of correct rgb color must be integer in range 0..=255. // Tuple implementation impl TryFrom<(i16, i16, i16)> for Color { type Error = String; fn try_from(tuple: (i16, i16, i16)) -> Result { } } // Array implementation impl TryFrom<[i16; 3]> for Color { type Error = String; fn try_from(arr: [i16; 3]) -> Result { } } // Slice implementation impl TryFrom<&[i16]> for Color { type Error = String; fn try_from(slice: &[i16]) -> Result { } } fn main() { // Use the `from` function let c1 = Color::try_from((183, 65, 14)); println!("{:?}", c1); // Since From is implemented for Color, we should be able to use Into let c2: Result = [183, 65, 14].try_into(); println!("{:?}", c2); let v = vec![183, 65, 14]; // With slice we should use `from` function let c3 = Color::try_from(&v[..]); println!("{:?}", c3); // or take slice within round brackets and use Into let c4: Result = (&v[..]).try_into(); println!("{:?}", c4); } #[cfg(test)] mod tests { use super::*; #[test] #[should_panic] fn test_tuple_out_of_range_positive() { let _ = Color::try_from((256, 1000, 10000)).unwrap(); } #[test] #[should_panic] fn test_tuple_out_of_range_negative() { let _ = Color::try_from((-1, -10, -256)).unwrap(); } #[test] fn test_tuple_correct() { let c: Color = (183, 65, 14).try_into().unwrap(); assert_eq!(c.red, 183); assert_eq!(c.green, 65); assert_eq!(c.blue, 14); } #[test] #[should_panic] fn test_array_out_of_range_positive() { let _: Color = [1000, 10000, 256].try_into().unwrap(); } #[test] #[should_panic] fn test_array_out_of_range_negative() { let _: Color = [-10, -256, -1].try_into().unwrap(); } #[test] fn test_array_correct() { let c: Color = [183, 65, 14].try_into().unwrap(); assert_eq!(c.red, 183); assert_eq!(c.green, 65); assert_eq!(c.blue, 14); } #[test] #[should_panic] fn test_slice_out_of_range_positive() { let arr = [10000, 256, 1000]; let _ = Color::try_from(&arr[..]).unwrap(); } #[test] #[should_panic] fn test_slice_out_of_range_negative() { let arr = [-256, -1, -10]; let _ = Color::try_from(&arr[..]).unwrap(); } #[test] fn test_slice_correct() { let v = vec![183, 65, 14]; let c = Color::try_from(&v[..]).unwrap(); assert_eq!(c.red, 183); assert_eq!(c.green, 65); assert_eq!(c.blue, 14); } #[test] #[should_panic] fn test_slice_excess_length() { let v = vec![0, 0, 0, 0]; let _ = Color::try_from(&v[..]).unwrap(); } #[test] #[should_panic] fn test_slice_insufficient_length() { let v = vec![0, 0]; let _ = Color::try_from(&v[..]).unwrap(); } }