
P R A C T I C A L P R O G R A M M I N G
F O R T O T A L B E G I N N E R S

A L S W E I G A R T

A U T O M A T E
T H E B O R I N G S T U F F

W I T H P Y T H O N

A U T O M A T E
T H E B O R I N G S T U F F

W I T H P Y T H O N

2 N D E D I T I O N

$39.95 ($53.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

G E T S T U F F D O N E .
L E A R N P Y T H O N .

G E T S T U F F D O N E .
L E A R N P Y T H O N .

C O V E R S P Y T H O N 3 . X

If you’ve ever spent hours renaming files or updating
hundreds of spreadsheet cells, you know how tedious
tasks like these can be. But what if you could have your
computer do them for you?

In this fully revised second edition of Automate the
Boring Stuff with Python, you’ll learn how to use Python
to write programs that do in minutes what would take
you hours to do by hand—no prior programming experi-
ence required. You’ll learn the basics of Python and
explore Python’s rich library of modules for performing
specific tasks, like scraping data off websites, reading
PDF and Word documents, and automating clicking and
typing tasks.

The second edition of this international best-seller
includes a brand-new chapter on input validation,
as well as tutorials on automating Gmail and Google
Sheets, and tips on automatically updating CSV files.
You’ll learn how to create programs that effortlessly
perform useful feats of automation to:

• Search for text in a file or across multiple files

• Create, update, move, and rename files and folders

• Search the web and download online content

• Split, merge, watermark, and encrypt PDFs

• Send email responses and text notifications

• Fill out online forms

Step-by-step instructions walk you through each program,
and updated practice projects at the end of each chapter
challenge you to improve those programs and use your
newfound skills to automate similar tasks.

Don’t spend your time doing work a well-trained monkey
could do. Even if you’ve never written a line of code,
you can make your computer do the grunt work. Learn
how in Automate the Boring Stuff with Python.

A B O U T T H E A U T H O R

Al Sweigart is a professional software developer who
teaches programming to kids and adults. Sweigart
has written several bestselling programming books
for beginners, including Invent Your Own Computer
Games with Python, Cracking Codes with Python, and
Coding with Minecraft (all from No Starch Press).

O V E R 2 0 0 , 0 0 0
C O P I E S S O L D

O V E R 2 0 0 , 0 0 0
C O P I E S S O L D

O V E R 2 0 0 , 0 0 0
C O P I E S S O L D

O V E R 2 0 0 , 0 0 0
C O P I E S S O L D

SHELVE IN:
PROGRAM

M
ING LANGUAGES/

PYTHON

A
U

T
O

M
A

T
E

 T
H

E
 B

O
R

IN
G

S
T

U
F

F
 W

IT
H

 P
Y

T
H

O
N

A
U

T
O

M
A

T
E

 T
H

E
 B

O
R

IN
G

S
T

U
F

F
 W

IT
H

 P
Y

T
H

O
N

S
W

E
IG

A
R

T

2 N D E D I T I O N

AUTOMATE THE BORING STUFF
WITH PYTHON

A U T O M A T E T H E
B O R I N G S T U F F
W I T H P Y T H O N

2 N D E D I T I O N

P r a c t i c a l P r o g r a m m i n g
f o r T o t a l B e g i n n e r s

by Al Sweigart

San Francisco

AUTOMATE THE BORING STUFF WITH PYTHON, 2ND EDITION. Copyright © 2020 by Al Sweigart.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-992-2
ISBN-13: 978-1-59327-992-9

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Josh Ellingson
Interior Design: Octopod Studios
Developmental Editors: Frances Saux and Jan Cash
Technical Reviewers: Ari Lacenski and Philip James
Copyeditors: Kim Wimpsett, Britt Bogan, and Paula L. Fleming
Compositors: Susan Glinert Stevens and Danielle Foster
Proofreaders: Lisa Devoto Farrell and Emelie Burnette
Indexer: BIM Indexing and Proofreading Services

For information on distribution, translations, or bulk sales,
please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress Control Number for the first edition is: 2014953114

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United
States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

For my nephew Jack

About the Author
Al Sweigart is a software developer and tech book author. Python is his
favorite programming language, and he is the developer of several open
source modules for it. His other books are freely available under a Creative
Commons license on his website https://inventwithpython.com/. His cat now
weighs 11 pounds.

About the Tech Reviewer
Philip James has been working in Python for over a decade and is a frequent
speaker in the Python community. He speaks on topics ranging from Unix
fundamentals to open source social networks. Philip is a Core Contributor to
the BeeWare project and lives in the San Francisco Bay Area with his partner
Nic and her cat River.

B R I E F C O N T E N T S

Acknowledgments . xxv

Introduction . xxvii

PART I: PYTHON PROGRAMMING BASICS

Chapter 1: Python Basics . 3

Chapter 2: Flow Control . 21

Chapter 3: Functions . 57

Chapter 4: Lists . . 77

Chapter 5: Dictionaries and Structuring Data . 111

Chapter 6: Manipulating Strings . 129

PART II: AUTOMATING TASKS

Chapter 7: Pattern Matching with Regular Expressions . . 161

Chapter 8: Input Validation . 187

Chapter 9: Reading and Writing Files . 201

Chapter 10: Organizing Files . . 231

Chapter 11: Debugging . . 249

Chapter 12: Web Scraping . 267

Chapter 13: Working with Excel Spreadsheets . 301

Chapter 14: Working with Google Sheets . 329

Chapter 15: Working with PDF and Word Documents . . 347

Chapter 16: Working with CSV Files and JSON Data . 371

Chapter 17: Keeping Time, Scheduling Tasks, and Launching Programs 389

Chapter 18: Sending Email and Text Messages . 415

viii Brief Contents

Chapter 19: Manipulating Images . 447

Chapter 20: Controlling the Keyboard and Mouse with GUI Automation 473

Appendix A: Installing Third-Party Modules . 507

Appendix B: Running Programs . 511

Appendix C: Answers to the Practice Questions . 517

Index . . 531

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xxv

INTRODUCTION	 xxvii
Whom Is This Book For? . xxviii
Conventions . xxviii
What Is Programming? . xxix

What Is Python? . . xxx
Programmers Don’t Need to Know Much Math . xxx
You Are Not Too Old to Learn Programming . xxxi
Programming Is a Creative Activity . . xxxi

About This Book . xxxi
Downloading and Installing Python . xxxiii
Downloading and Installing Mu . xxxiv
Starting Mu . xxxiv
Starting IDLE . . xxxv
The Interactive Shell . . xxxv
Installing Third-Party Modules . xxxvi
How to Find Help . xxxvi
Asking Smart Programming Questions . xxxviii
Summary . xxxix

PART I: PYTHON PROGRAMMING BASICS	

1
PYTHON BASICS	 3
Entering Expressions into the Interactive Shell . 4
The Integer, Floating-Point, and String Data Types . 7
String Concatenation and Replication . 7
Storing Values in Variables . 9

Assignment Statements . 9
Variable Names . 10

Your First Program . . 11
Dissecting Your Program . 13

Comments . 13
The print() Function . . 13
The input() Function . 14
Printing the User’s Name . . 14
The len() Function . 14
The str(), int(), and float() Functions . 15

Summary . 18
Practice Questions . . 19

x Contents in Detail

2
FLOW CONTROL	 21
Boolean Values . . 22
Comparison Operators . 23
Boolean Operators . 25

Binary Boolean Operators . . 25
The not Operator . 26

Mixing Boolean and Comparison Operators . 26
Elements of Flow Control . 27

Conditions . 27
Blocks of Code . 27

Program Execution . 28
Flow Control Statements . . 28

if Statements . 28
else Statements . 29
elif Statements . 30
while Loop Statements . 35
break Statements . 39
continue Statements . 40
for Loops and the range() Function . 44

Importing Modules . 47
from import Statements . 48

Ending a Program Early with the sys.exit() Function . 49
A Short Program: Guess the Number . 49
A Short Program: Rock, Paper, Scissors . 51
Summary . 55
Practice Questions . . 55

3
FUNCTIONS	 57
def Statements with Parameters . 59

Define, Call, Pass, Argument, Parameter . 59
Return Values and return Statements . 60
The None Value . 61
Keyword Arguments and the print() Function . . 62
The Call Stack . 63
Local and Global Scope . 65

Local Variables Cannot Be Used in the Global Scope 66
Local Scopes Cannot Use Variables in Other Local Scopes 67
Global Variables Can Be Read from a Local Scope . 67
Local and Global Variables with the Same Name . 68

The global Statement . 68
Exception Handling . 71
A Short Program: Zigzag . 72
Summary . 75
Practice Questions . . 75

Contents in Detail xi

Practice Projects . 76
The Collatz Sequence . 76
Input Validation . 76

4
LISTS	 77
The List Data Type . 78

Getting Individual Values in a List with Indexes . 78
Negative Indexes . 80
Getting a List from Another List with Slices . 80
Getting a List’s Length with the len() Function . 81
Changing Values in a List with Indexes . 81
List Concatenation and List Replication . 81
Removing Values from Lists with del Statements . 82

Working with Lists . 82
Using for Loops with Lists . 84
The in and not in Operators . 84
The Multiple Assignment Trick . 85
Using the enumerate() Function with Lists . 86
Using the random.choice() and random.shuffle() Functions with Lists 86

Augmented Assignment Operators . 87
Methods . 88

Finding a Value in a List with the index() Method . 88
Adding Values to Lists with the append() and insert() Methods 89
Removing Values from Lists with the remove() Method 90
Sorting the Values in a List with the sort() Method . 90
Reversing the Values in a List with the reverse() Method 91

Example Program: Magic 8 Ball with a List . . 92
Sequence Data Types . 93

Mutable and Immutable Data Types . 94
The Tuple Data Type . . 96
Converting Types with the list() and tuple() Functions 97

References . 97
Identity and the id() Function . 99
Passing References . 100
The copy Module’s copy() and deepcopy() Functions 101

A Short Program: Conway’s Game of Life . 102
Summary . 106
Practice Questions . . 106
Practice Projects . 107

Comma Code . 107
Coin Flip Streaks . 107
Character Picture Grid . 108

5
DICTIONARIES AND STRUCTURING DATA	 111
The Dictionary Data Type . . 111

Dictionaries vs. Lists . 112
The keys(), values(), and items() Methods . 114

xii Contents in Detail

Checking Whether a Key or Value Exists in a Dictionary 115
The get() Method . 116
The setdefault() Method . . 116

Pretty Printing . 118
Using Data Structures to Model Real-World Things . 119

A Tic-Tac-Toe Board . 120
Nested Dictionaries and Lists . 125

Summary . 126
Practice Questions . . 126
Practice Projects . 127

Chess Dictionary Validator . 127
Fantasy Game Inventory . 127
List to Dictionary Function for Fantasy Game Inventory 128

6
MANIPULATING STRINGS	 129
Working with Strings . 130

String Literals . 130
Indexing and Slicing Strings . 132
The in and not in Operators with Strings . 133

Putting Strings Inside Other Strings . 134
Useful String Methods . 134

The upper(), lower(), isupper(), and islower() Methods 135
The isX() Methods . . 136
The startswith() and endswith() Methods . 138
The join() and split() Methods . . 138
Splitting Strings with the partition() Method . 140
Justifying Text with the rjust(), ljust(), and center() Methods 140
Removing Whitespace with the strip(), rstrip(), and lstrip() Methods 142

Numeric Values of Characters with the ord() and chr() Functions 143
Copying and Pasting Strings with the pyperclip Module . . 143
Project: Multi-Clipboard Automatic Messages . 144

Step 1: Program Design and Data Structures . 144
Step 2: Handle Command Line Arguments . 145
Step 3: Copy the Right Phrase . 146

Project: Adding Bullets to Wiki Markup . 147
Step 1: Copy and Paste from the Clipboard . 147
Step 2: Separate the Lines of Text and Add the Star 148
Step 3: Join the Modified Lines . 148

A Short Progam: Pig Latin . 149
Summary . 153
Practice Questions . . 153
Practice Projects . 154

Table Printer . 154
Zombie Dice Bots . 155

Contents in Detail xiii

PART II: AUTOMATING TASKS	

7
PATTERN MATCHING WITH REGULAR EXPRESSIONS	 161
Finding Patterns of Text Without Regular Expressions . . 162
Finding Patterns of Text with Regular Expressions . 164

Creating Regex Objects . 165
Matching Regex Objects . 165
Review of Regular Expression Matching . 166

More Pattern Matching with Regular Expressions . 166
Grouping with Parentheses . 166
Matching Multiple Groups with the Pipe . 168
Optional Matching with the Question Mark . . 168
Matching Zero or More with the Star . 169
Matching One or More with the Plus . 170
Matching Specific Repetitions with Braces . 170

Greedy and Non-greedy Matching . 171
The findall() Method . 171
Character Classes . 172
Making Your Own Character Classes . 173
The Caret and Dollar Sign Characters . 174
The Wildcard Character . 175

Matching Everything with Dot-Star . 175
Matching Newlines with the Dot Character . 176

Review of Regex Symbols . . 177
Case-Insensitive Matching . 177
Substituting Strings with the sub() Method . . 178
Managing Complex Regexes . 178
Combining re.IGNORECASE, re.DOTALL, and re.VERBOSE 179
Project: Phone Number and Email Address Extractor . 179

Step 1: Create a Regex for Phone Numbers . 180
Step 2: Create a Regex for Email Addresses . 181
Step 3: Find All Matches in the Clipboard Text . 182
Step 4: Join the Matches into a String for the Clipboard 183
Running the Program . 183
Ideas for Similar Programs . 183

Summary . 184
Practice Questions . . 184
Practice Projects . 186

Date Detection . 186
Strong Password Detection . 186
Regex Version of the strip() Method . 186

8
INPUT VALIDATION	 187
The PyInputPlus Module . 188

The min, max, greaterThan, and lessThan Keyword Arguments 190
The blank Keyword Argument . 191

xiv Contents in Detail

The limit, timeout, and default Keyword Arguments 191
The allowRegexes and blockRegexes Keyword Arguments 192
Passing a Custom Validation Function to inputCustom() 193

Project: How to Keep an Idiot Busy for Hours . 194
Project: Multiplication Quiz . 196
Summary . 197
Practice Questions . . 198
Practice Projects . 198

Sandwich Maker . 198
Write Your Own Multiplication Quiz . 199

9
READING AND WRITING FILES	 201
Files and File Paths . 201

Backslash on Windows and Forward Slash on macOS and Linux 202
Using the / Operator to Join Paths . 204
The Current Working Directory . 205
The Home Directory . 206
Absolute vs. Relative Paths . 206
Creating New Folders Using the os.makedirs() Function 207
Handling Absolute and Relative Paths . . 208
Getting the Parts of a File Path . 209
Finding File Sizes and Folder Contents . 212
Modifying a List of Files Using Glob Patterns . 213
Checking Path Validity . 214

The File Reading/Writing Process . 215
Opening Files with the open() Function . 217
Reading the Contents of Files . . 217
Writing to Files . 218

Saving Variables with the shelve Module . 219
Saving Variables with the pprint.pformat() Function . 220
Project: Generating Random Quiz Files . 221

Step 1: Store the Quiz Data in a Dictionary . 222
Step 2: Create the Quiz File and Shuffle the Question Order 223
Step 3: Create the Answer Options . 224
Step 4: Write Content to the Quiz and Answer Key Files 225

Project: Updatable Multi-Clipboard . 226
Step 1: Comments and Shelf Setup . . 227
Step 2: Save Clipboard Content with a Keyword . 227
Step 3: List Keywords and Load a Keyword’s Content 228

Summary . 229
Practice Questions . . 229
Practice Projects . 229

Extending the Multi-Clipboard . 229
Mad Libs . . 230
Regex Search . 230

Contents in Detail xv

10
ORGANIZING FILES	 231
The shutil Module . 232

Copying Files and Folders . . 232
Moving and Renaming Files and Folders . . 233
Permanently Deleting Files and Folders . 234
Safe Deletes with the send2trash Module . 235

Walking a Directory Tree . . 235
Compressing Files with the zipfile Module . 237

Reading ZIP Files . 238
Extracting from ZIP Files . 238
Creating and Adding to ZIP Files . 239

Project: Renaming Files with American-Style Dates to European-Style Dates 240
Step 1: Create a Regex for American-Style Dates . 240
Step 2: Identify the Date Parts from the Filenames . 241
Step 3: Form the New Filename and Rename the Files 242
Ideas for Similar Programs . 243

Project: Backing Up a Folder into a ZIP File . 243
Step 1: Figure Out the ZIP File’s Name . 243
Step 2: Create the New ZIP File . . 245
Step 3: Walk the Directory Tree and Add to the ZIP File 245
Ideas for Similar Programs . 246

Summary . 246
Practice Questions . . 247
Practice Projects . 247

Selective Copy . . 247
Deleting Unneeded Files . 247
Filling in the Gaps . 248

11
DEBUGGING	 249
Raising Exceptions . 250
Getting the Traceback as a String . 251
Assertions . 253

Using an Assertion in a Traffic Light Simulation . 254
Logging . 255

Using the logging Module . 256
Don’t Debug with the print() Function . 257
Logging Levels . 258
Disabling Logging . 259
Logging to a File . 259

Mu’s Debugger . . 260
Continue . 261
Step In . 261
Step Over . 261
Step Out . 261
Stop	 . 261

xvi Contents in Detail

Debugging a Number Adding Program . 261
Breakpoints . 263

Summary . 264
Practice Questions . . 265
Practice Project . 266

Debugging Coin Toss . 266

12
WEB SCRAPING	 267
Project: mapIt.py with the webbrowser Module . . 268

Step 1: Figure Out the URL . 268
Step 2: Handle the Command Line Arguments . 269
Step 3: Handle the Clipboard Content and Launch the Browser 270
Ideas for Similar Programs . 270

Downloading Files from the Web with the requests Module . 271
Downloading a Web Page with the requests.get() Function 271
Checking for Errors . 272

Saving Downloaded Files to the Hard Drive . 273
HTML . . 274

Resources for Learning HTML . 274
A Quick Refresher . 274
Viewing the Source HTML of a Web Page . . 275
Opening Your Browser’s Developer Tools . 276
Using the Developer Tools to Find HTML Elements . 278

Parsing HTML with the bs4 Module . 279
Creating a BeautifulSoup Object from HTML . 280
Finding an Element with the select() Method . 280
Getting Data from an Element’s Attributes . 282

Project: Opening All Search Results . 283
Step 1: Get the Command Line Arguments and Request the Search Page 283
Step 2: Find All the Results . 284
Step 3: Open Web Browsers for Each Result . 285
Ideas for Similar Programs . 285

Project: Downloading All XKCD Comics . . 286
Step 1: Design the Program . . 287
Step 2: Download the Web Page . 288
Step 3: Find and Download the Comic Image . 288
Step 4: Save the Image and Find the Previous Comic 289
Ideas for Similar Programs . 290

Controlling the Browser with the selenium Module . . 291
Starting a selenium-Controlled Browser . 291
Finding Elements on the Page . 293
Clicking the Page . . 295
Filling Out and Submitting Forms . 295
Sending Special Keys . 296
Clicking Browser Buttons . 297
More Information on Selenium . 297

Contents in Detail xvii

Summary . 297
Practice Questions . . 297
Practice Projects . 298

Command Line Emailer . 298
Image Site Downloader . 298
2048 . 299
Link Verification . 299

13
WORKING WITH EXCEL SPREADSHEETS	 301
Excel Documents . 302
Installing the openpyxl Module . 302
Reading Excel Documents . 302

Opening Excel Documents with OpenPyXL . 303
Getting Sheets from the Workbook . . 304
Getting Cells from the Sheets . 304
Converting Between Column Letters and Numbers . 306
Getting Rows and Columns from the Sheets . 306
Workbooks, Sheets, Cells . 308

Project: Reading Data from a Spreadsheet . 308
Step 1: Read the Spreadsheet Data . 309
Step 2: Populate the Data Structure . 310
Step 3: Write the Results to a File . . 311
Ideas for Similar Programs . 312

Writing Excel Documents . 313
Creating and Saving Excel Documents . 313
Creating and Removing Sheets . 314
Writing Values to Cells . 314

Project: Updating a Spreadsheet . . 315
Step 1: Set Up a Data Structure with the Update Information 316
Step 2: Check All Rows and Update Incorrect Prices 317
Ideas for Similar Programs . 317

Setting the Font Style of Cells . 318
Font Objects . . 318
Formulas . 319
Adjusting Rows and Columns . 320

Setting Row Height and Column Width . . 321
Merging and Unmerging Cells . . 322
Freezing Panes . 322

Charts . 324
Summary . 325
Practice Questions . . 326
Practice Projects . 326

Multiplication Table Maker . 326
Blank Row Inserter . 327
Spreadsheet Cell Inverter . 327
Text Files to Spreadsheet . . 328
Spreadsheet to Text Files . . 328

xviii Contents in Detail

14
WORKING WITH GOOGLE SHEETS	 329
Installing and Setting Up EZSheets . 329

Obtaining Credentials and Token Files . 330
Revoking the Credentials File . 332

Spreadsheet Objects . 332
Creating, Uploading, and Listing Spreadsheets . 333
Spreadsheet Attributes . 334
Downloading and Uploading Spreadsheets . . 335
Deleting Spreadsheets . 336

Sheet Objects . 336
Reading and Writing Data . 337
Creating and Deleting Sheets . 341
Copying Sheets . 343

Working with Google Sheets Quotas . 343
Summary . 344
Practice Questions . . 344
Practice Projects . 345

Downloading Google Forms Data . 345
Converting Spreadsheets to Other Formats . 345
Finding Mistakes in a Spreadsheet . 345

15
WORKING WITH PDF AND WORD DOCUMENTS	 347
PDF Documents . 347

Extracting Text from PDFs . 348
Decrypting PDFs . . 349
Creating PDFs . 350

Project: Combining Select Pages from Many PDFs . 355
Step 1: Find All PDF Files . 355
Step 2: Open Each PDF . 356
Step 3: Add Each Page . 357
Step 4: Save the Results . 357
Ideas for Similar Programs . 358

Word Documents . 358
Reading Word Documents . 359
Getting the Full Text from a .docx File . 360
Styling Paragraph and Run Objects . 361
Creating Word Documents with Nondefault Styles . 362
Run Attributes . 362
Writing Word Documents . 364
Adding Headings . . 366
Adding Line and Page Breaks . 366
Adding Pictures . 367

Creating PDFs from Word Documents . 367
Summary . 368
Practice Questions . . 368

Contents in Detail xix

Practice Projects . 369
PDF Paranoia . 369
Custom Invitations as Word Documents . 369
Brute-Force PDF Password Breaker . 370

16
WORKING WITH CSV FILES AND JSON DATA	 371
The csv Module . . 372

reader Objects . 373
Reading Data from reader Objects in a for Loop . 374
writer Objects . 374
The delimiter and lineterminator Keyword Arguments 375
DictReader and DictWriter CSV Objects . 376

Project: Removing the Header from CSV Files . 378
Step 1: Loop Through Each CSV File . 378
Step 2: Read in the CSV File . 379
Step 3: Write Out the CSV File Without the First Row 380
Ideas for Similar Programs . 381

JSON and APIs . . 381
The json Module . 382

Reading JSON with the loads() Function . 382
Writing JSON with the dumps() Function . . 383

Project: Fetching Current Weather Data . 383
Step 1: Get Location from the Command Line Argument 384
Step 2: Download the JSON Data . 385
Step 3: Load JSON Data and Print Weather . 385
Ideas for Similar Programs . 387

Summary . 387
Practice Questions . . 387
Practice Project . 388

Excel-to-CSV Converter . 388

17
KEEPING TIME, SCHEDULING TASKS,
AND LAUNCHING PROGRAMS	 389
The time Module . 390

The time.time() Function . 390
The time.sleep() Function . 391

Rounding Numbers . 392
Project: Super Stopwatch . 392

Step 1: Set Up the Program to Track Times . 393
Step 2: Track and Print Lap Times . 393
Ideas for Similar Programs . 394

The datetime Module . 395
The timedelta Data Type . 396
Pausing Until a Specific Date . . 397
Converting datetime Objects into Strings . . 398
Converting Strings into datetime Objects . . 399

xx Contents in Detail

Review of Python’s Time Functions . . 399
Multithreading . 400

Passing Arguments to the Thread’s Target Function . 402
Concurrency Issues . . 403

Project: Multithreaded XKCD Downloader . 403
Step 1: Modify the Program to Use a Function . 403
Step 2: Create and Start Threads . 405
Step 3: Wait for All Threads to End . 405

Launching Other Programs from Python . 406
Passing Command Line Arguments to the Popen() Function 408
Task Scheduler, launchd, and cron . . 408
Opening Websites with Python . 409
Running Other Python Scripts . . 409
Opening Files with Default Applications . 409

Project: Simple Countdown Program . 410
Step 1: Count Down . . 410
Step 2: Play the Sound File . 411
Ideas for Similar Programs . 412

Summary . 412
Practice Questions . . 412
Practice Projects . 413

Prettified Stopwatch . 413
Scheduled Web Comic Downloader . 413

18
SENDING EMAIL AND TEXT MESSAGES	 415
Sending and Receiving Email with the Gmail API . 416

Enabling the Gmail API . . 416
Sending Mail from a Gmail Account . 417
Reading Mail from a Gmail Account . 418
Searching Mail from a Gmail Account . 419
Downloading Attachments from a Gmail Account . 419

SMTP . . 420
Sending Email . 420

Connecting to an SMTP Server . . 421
Sending the SMTP “Hello” Message . 422
Starting TLS Encryption . 422
Logging In to the SMTP Server . 423
Sending an Email . . 423
Disconnecting from the SMTP Server . . 424

IMAP . 424
Retrieving and Deleting Emails with IMAP . 424

Connecting to an IMAP Server . 425
Logging In to the IMAP Server . 426
Searching for Email . 426
Fetching an Email and Marking It as Read . 430
Getting Email Addresses from a Raw Message . 431

Contents in Detail xxi

Getting the Body from a Raw Message . 431
Deleting Emails . 432
Disconnecting from the IMAP Server . 433

Project: Sending Member Dues Reminder Emails . 433
Step 1: Open the Excel File . 434
Step 2: Find All Unpaid Members . 435
Step 3: Send Customized Email Reminders . 436

Sending Text Messages with SMS Email Gateways . 437
Sending Text Messages with Twilio . 438

Signing Up for a Twilio Account . 439
Sending Text Messages . 439

Project: “Just Text Me” Module . 441
Summary . 442
Practice Questions . . 443
Practice Projects . 443

Random Chore Assignment Emailer . 443
Umbrella Reminder . . 444
Auto Unsubscriber . 444
Controlling Your Computer Through Email . . 444

19
MANIPULATING IMAGES	 447
Computer Image Fundamentals . . 448

Colors and RGBA Values . 448
Coordinates and Box Tuples . 449

Manipulating Images with Pillow . . 450
Working with the Image Data Type . 451
Cropping Images . 453
Copying and Pasting Images onto Other Images . 454
Resizing an Image . 456
Rotating and Flipping Images . 457
Changing Individual Pixels . 459

Project: Adding a Logo . 460
Step 1: Open the Logo Image . 461
Step 2: Loop Over All Files and Open Images . 462
Step 3: Resize the Images . 463
Step 4: Add the Logo and Save the Changes . 463
Ideas for Similar Programs . 465

Drawing on Images . 465
Drawing Shapes . 466
Drawing Text . 468

Summary . 469
Practice Questions . . 470
Practice Projects . 470

Extending and Fixing the Chapter Project Programs 470
Identifying Photo Folders on the Hard Drive . 471
Custom Seating Cards . 472

xxii Contents in Detail

20
CONTROLLING THE KEYBOARD AND MOUSE
WITH GUI AUTOMATION	 473
Installing the pyautogui Module . 474
Setting Up Accessibility Apps on macOS . 474
Staying on Track . 475

Pauses and Fail-Safes . 475
Shutting Down Everything by Logging Out . . 475

Controlling Mouse Movement . 475
Moving the Mouse . 477
Getting the Mouse Position . 477

Controlling Mouse Interaction . 478
Clicking the Mouse . . 478
Dragging the Mouse . . 479
Scrolling the Mouse . 480

Planning Your Mouse Movements . 481
Working with the Screen . 482

Getting a Screenshot . 482
Analyzing the Screenshot . 483

Image Recognition . 484
Getting Window Information . 485

Obtaining the Active Window . 486
Other Ways of Obtaining Windows . . 487
Manipulating Windows . 487

Controlling the Keyboard . 489
Sending a String from the Keyboard . . 489
Key Names . 490
Pressing and Releasing the Keyboard . 491
Hotkey Combinations . 492

Setting Up Your GUI Automation Scripts . 492
Review of the PyAutoGUI Functions . 493
Project: Automatic Form Filler . 495

Step 1: Figure Out the Steps . 496
Step 2: Set Up Coordinates . 496
Step 3: Start Typing Data . 498
Step 4: Handle Select Lists and Radio Buttons . 499
Step 5: Submit the Form and Wait . 500

Displaying Message Boxes . . 501
Summary . 502
Practice Questions . . 503
Practice Projects . 503

Looking Busy . 503
Using the Clipboard to Read a Text Field . 503
Instant Messenger Bot . 504
Game-Playing Bot Tutorial . 505

Contents in Detail xxiii

A
INSTALLING THIRD-PARTY MODULES	 507
The pip Tool . 507
Installing Third-Party Modules . 508
Installing Modules for the Mu Editor . 510

B
RUNNING PROGRAMS	 511
Running Programs from the Terminal Window . 511
Running Python Programs on Windows . 513
Running Python Programs on macOS . . 514
Running Python Programs on Ubuntu Linux . 514
Running Python Programs with Assertions Disabled . 515

C
ANSWERS TO THE PRACTICE QUESTIONS	 517
Chapter 1 . 518
Chapter 2 . 518
Chapter 3 . 520
Chapter 4 . 520
Chapter 5 . 521
Chapter 6 . 521
Chapter 7 . 522
Chapter 8 . 523
Chapter 9 . 523
Chapter 10 . 524
Chapter 11 . 524
Chapter 12 . 525
Chapter 13 . 526
Chapter 14 . 527
Chapter 15 . 527
Chapter 16 . 528
Chapter 17 . 528
Chapter 18 . 529
Chapter 19 . 529
Chapter 20 . 529

INDEX	 531

A C K N O W L E D G M E N T S

It’s misleading to have just my name on the cover.
I couldn’t have written a book like this without the
help of a lot of people. I’d like to thank my publisher,
Bill Pollock; my editors, Laurel Chun, Leslie Shen,
Greg Poulos, Jennifer Griffith-Delgado, and Frances
Saux; and the rest of the staff at No Starch Press for
their invaluable help. Thanks to my tech reviewers,
Ari Lacenski and Philip James, for great suggestions,
edits, and support.

Many thanks to everyone at the Python Software Foundation for their
great work. The Python community is the best one I’ve found in the tech
industry.

Finally, I would like to thank my family, friends, and the gang at
Shotwell’s for not minding the busy life I’ve had while writing this book.
Cheers!

“You’ve just done in two hours what it takes
the three of us two days to do.” My college

roommate was working at a retail electronics
store in the early 2000s. Occasionally, the store

would receive a spreadsheet of thousands of product
prices from other stores. A team of three employees
would print the spreadsheet onto a thick stack of paper and split it among
themselves. For each product price, they would look up their store’s price
and note all the products that their competitors sold for less. It usually took
a couple of days.

“You know, I could write a program to do that if you have the original
file for the printouts,” my roommate told them, when he saw them sitting
on the floor with papers scattered and stacked all around.

After a couple of hours, he had a short program that read a competi-
tor’s price from a file, found the product in the store’s database, and noted
whether the competitor was cheaper. He was still new to programming, so
he spent most of his time looking up documentation in a programming

I N T R O D U C T I O N

xxviii Introduction

book. The actual program took only a few seconds to run. My roommate
and his co-workers took an extra-long lunch that day.

This is the power of computer programming. A computer is like a
Swiss Army knife that you can configure for countless tasks. Many people
spend hours clicking and typing to perform repetitive tasks, unaware that
the machine they’re using could do their job in seconds if they gave it the
right instructions.

Whom Is This Book For?
Software is at the core of so many of the tools we use today: nearly everyone
uses social networks to communicate, many people have internet-connected
computers in their phones, and most office jobs involve interacting with a
computer to get work done. As a result, the demand for people who can
code has skyrocketed. Countless books, interactive web tutorials, and devel-
oper boot camps promise to turn ambitious beginners into software engi-
neers with six-figure salaries.

This book is not for those people. It’s for everyone else.
On its own, this book won’t turn you into a professional software devel-

oper any more than a few guitar lessons will turn you into a rock star. But if
you’re an office worker, administrator, academic, or anyone else who uses a
computer for work or fun, you will learn the basics of programming so that
you can automate simple tasks such as these:

•	 Moving and renaming thousands of files and sorting them into folders

•	 Filling out online forms—no typing required

•	 Downloading files or copying text from a website whenever it updates

•	 Having your computer text you custom notifications

•	 Updating or formatting Excel spreadsheets

•	 Checking your email and sending out prewritten responses

These tasks are simple but time-consuming for humans, and they’re
often so trivial or specific that there’s no ready-made software to perform
them. Armed with a little bit of programming knowledge, however, you can
have your computer do these tasks for you.

Conventions
This book is not designed as a reference manual; it’s a guide for begin-
ners. The coding style sometimes goes against best practices (for example,
some programs use global variables), but that’s a trade-off to make the
code simpler to learn. This book is made for people to write throwaway
code, so there’s not much time spent on style and elegance. Sophisticated
programming concepts—like object-oriented programming, list compre-
hensions, and generators—aren’t covered because of the complexity they

Introduction xxix

add. Veteran programmers may point out ways the code in this book could
be changed to improve efficiency, but this book is mostly concerned with
getting programs to work with the least amount of effort on your part.

What Is Programming?
Television shows and films often show programmers furiously typing cryptic
streams of 1s and 0s on glowing screens, but modern programming isn’t
that mysterious. Programming is simply the act of entering instructions for
the computer to perform. These instructions might crunch some numbers,
modify text, look up information in files, or communicate with other com-
puters over the internet.

All programs use basic instructions as building blocks. Here are a few
of the most common ones, in English:

•	 “Do this; then do that.”

•	 “If this condition is true, perform this action; otherwise, do that action.”

•	 “Do this action exactly 27 times.”

•	 “Keep doing that until this condition is true.”

You can combine these building blocks to implement more intricate
decisions, too. For example, here are the programming instructions, called
the source code, for a simple program written in the Python programming
language. Starting at the top, the Python software runs each line of code
(some lines are run only if a certain condition is true or else Python runs
some other line) until it reaches the bottom.

u passwordFile = open('SecretPasswordFile.txt')
v secretPassword = passwordFile.read()
w print('Enter your password.')

typedPassword = input()
x if typedPassword == secretPassword:
 y print('Access granted')
 z if typedPassword == '12345':
 { print('That password is one that an idiot puts on their luggage.')

else:
 | print('Access denied')

You might not know anything about programming, but you could prob-
ably make a reasonable guess at what the previous code does just by reading
it. First, the file SecretPasswordFile.txt is opened u, and the secret password in
it is read v. Then, the user is prompted to input a password (from the key-
board) w. These two passwords are compared x, and if they’re the same,
the program prints Access granted to the screen y. Next, the program checks
to see whether the password is 12345 z and hints that this choice might not
be the best for a password {. If the passwords are not the same, the pro-
gram prints Access denied to the screen |.

xxx Introduction

What Is Python?
Python is a programming language (with syntax rules for writing what is
considered valid Python code) and the Python interpreter software that
reads source code (written in the Python language) and performs its
instructions. You can download the Python interpreter for free at https://
python.org/, and there are versions for Linux, macOS, and Windows.

The name Python comes from the surreal British comedy group Monty
Python, not from the snake. Python programmers are affectionately called
Pythonistas, and both Monty Python and serpentine references usually pep-
per Python tutorials and documentation.

Programmers Don’t Need to Know Much Math
The most common anxiety I hear about learning to program is the notion
that it requires a lot of math. Actually, most programming doesn’t require
math beyond basic arithmetic. In fact, being good at programming isn’t
that different from being good at solving Sudoku puzzles.

To solve a Sudoku puzzle, the numbers 1 through 9 must be filled in for
each row, each column, and each 3×3 interior square of the full 9×9 board.
Some numbers are provided to give you a start, and you find a solution
by making deductions based on these numbers. In the puzzle shown in
Figure 0-1, since 5 appears in the first and second rows, it cannot show up
in these rows again. Therefore, in the upper-right grid, it must be in the third
row. Since the last column also already has a 5 in it, the 5 cannot go to the
right of the 6, so it must go to the left of the 6. Solving one row, column, or
square will provide more clues to the rest of the puzzle, and as you fill in one
group of numbers 1 to 9 and then another, you’ll soon solve the entire grid.

Figure 0-1: A new Sudoku puzzle (left) and its solution (right). Despite using numbers,
Sudoku doesn’t involve much math. (Images © Wikimedia Commons)

Just because Sudoku involves numbers doesn’t mean you have to
be good at math to figure out the solution. The same is true of program-
ming. Like solving a Sudoku puzzle, writing programs involves breaking

Introduction xxxi

down a problem into individual, detailed steps. Similarly, when debugging
programs (that is, finding and fixing errors), you’ll patiently observe what
the program is doing and find the cause of the bugs. And like all skills, the
more you program, the better you’ll become.

You Are Not Too Old to Learn Programming
The second most common anxiety I hear about learning to program is that
people think they’re too old to learn it. I read many internet comments
from folks who think it’s too late for them because they are already (gasp!)
23 years old. This is clearly not “too old” to learn to program: many people
learn much later in life.

You don’t need to have started as a child to become a capable pro-
grammer. But the image of programmers as whiz kids is a persistent one.
Unfortunately, I contribute to this myth when I tell others that I was in
grade school when I started programming.

However, programming is much easier to learn today than it was in the
1990s. Today, there are more books, better search engines, and many more
online question-and-answer websites. On top of that, the programming lan-
guages themselves are far more user-friendly. For these reasons, everything
I learned about programming in the years between grade school and high
school graduation could be learned today in about a dozen weekends. My
head start wasn’t really much of a head start.

It’s important to have a “growth mindset” about programming—in
other words, understand that people develop programming skills through
practice. They aren’t just born as programmers, and being unskilled at pro-
gramming now is not an indication that you can never become an expert.

Programming Is a Creative Activity
Programming is a creative task, like painting, writing, knitting, or con-
structing LEGO castles. Like painting a blank canvas, making software has
many constraints but endless possibilities.

The difference between programming and other creative activities is
that when programming, you have all the raw materials you need in your
computer; you don’t need to buy any additional canvas, paint, film, yarn,
LEGO bricks, or electronic components. A decade-old computer is more
than powerful enough to write programs. Once your program is written, it
can be copied perfectly an infinite number of times. A knit sweater can only
be worn by one person at a time, but a useful program can easily be shared
online with the entire world.

About This Book
The first part of this book covers basic Python programming concepts, and
the second part covers various tasks you can have your computer automate.
Each chapter in the second part has project programs for you to study.
Here’s a brief rundown of what you’ll find in each chapter.

xxxii Introduction

Part I: Python Programming Basics

Chapter 1: Python Basics  Covers expressions, the most basic type of
Python instruction, and how to use the Python interactive shell soft-
ware to experiment with code.

Chapter 2: Flow Control  Explains how to make programs decide
which instructions to execute so your code can intelligently respond to
different conditions.

Chapter 3: Functions  Instructs you on how to define your own func-
tions so that you can organize your code into more manageable chunks.

Chapter 4: Lists  Introduces the list data type and explains how to
organize data.

Chapter 5: Dictionaries and Structuring Data  Introduces the diction-
ary data type and shows you more powerful ways to organize data.

Chapter 6: Manipulating Strings  Covers working with text data
(called strings in Python).

Part II: Automating Tasks

Chapter 7: Pattern Matching with Regular Expressions  Covers
how Python can manipulate strings and search for text patterns with
regular expressions.

Chapter 8: Input Validation  Explains how your program can verify
the information a user gives it, ensuring that the user’s data arrives in
a format that won’t cause errors in the rest of the program.

Chapter 9: Reading and Writing Files  Explains how your program
can read the contents of text files and save information to files on your
hard drive.

Chapter 10: Organizing Files  Shows how Python can copy, move,
rename, and delete large numbers of files much faster than a human
user can. Also explains compressing and decompressing files.

Chapter 11: Debugging  Shows how to use Python’s various bug-
finding and bug-fixing tools.

Chapter 12: Web Scraping  Shows how to write programs that can
automatically download web pages and parse them for information.
This is called web scraping.

Chapter 13: Working with Excel Spreadsheets  Covers programmati-
cally manipulating Excel spreadsheets so that you don’t have to read
them. This is helpful when the number of documents you have to ana-
lyze is in the hundreds or thousands.

Chapter 14: Working with Google Sheets  Covers how to read and
update Google Sheets, a popular web-based spreadsheet application,
using Python.

Chapter 15: Working with PDF and Word Documents  Covers pro-
grammatically reading Word and PDF documents.

Introduction xxxiii

Chapter 16: Working with CSV Files and JSON Data  Continues to
explain how to programmatically manipulate documents, now discuss-
ing CSV and JSON files.

Chapter 17: Keeping Time, Scheduling Tasks, and Launching Programs 
Explains how Python programs handle time and dates and how to
schedule your computer to perform tasks at certain times. Also shows
how your Python programs can launch non-Python programs.

Chapter 18: Sending Email and Text Messages  Explains how to write
programs that can send emails and text messages on your behalf.

Chapter 19: Manipulating Images  Explains how to programmatically
manipulate images such as JPEG or PNG files.

Chapter 20: Controlling the Keyboard and Mouse with GUI Automation 
Explains how to programmatically control the mouse and keyboard to
automate clicks and keypresses.

Appendix A: Installing Third-Party Modules  Shows you how to
extend Python with useful additional modules.

Appendix B: Running Programs  Shows you how to run your Python
programs on Windows, macOS, and Linux from outside of the code
editor.

Appendix C: Answers to the Practice Questions  Provides answers
and some additional context to the practice questions at the end of
each chapter.

Downloading and Installing Python
You can download Python for Windows, macOS, and Ubuntu for free at
https://python.org/downloads/. If you download the latest version from the
website’s download page, all of the programs in this book should work.

W A R N I N G 	 Be sure to download a version of Python 3 (such as 3.8.0). The programs in this book
are written to run on Python 3 and may not run correctly, if at all, on Python 2.

On the download page, you’ll find Python installers for 64-bit and 32-bit
computers for each operating system, so first figure out which installer you
need. If you bought your computer in 2007 or later, it is most likely a 64-bit
system. Otherwise, you have a 32-bit version, but here’s how to find out
for sure:

•	 On Windows, select StartControl Panel4System and check whether
System Type says 64-bit or 32-bit.

•	 On macOS, go the Apple menu, select About This MacMore
Info4System ReportHardware, and then look at the Processor
Name field. If it says Intel Core Solo or Intel Core Duo, you have a
32-bit machine. If it says anything else (including Intel Core 2 Duo),
you have a 64-bit machine.

xxxiv Introduction

•	 On Ubuntu Linux, open a Terminal and run the command uname -m.
A response of i686 means 32-bit, and x86_64 means 64-bit.

On Windows, download the Python installer (the filename will end
with .msi) and double-click it. Follow the instructions the installer displays
on the screen to install Python, as listed here:

1.	 Select Install for All Users and click Next.

2.	 Accept the default options for the next several windows by clicking Next.

On macOS, download the .dmg file that’s right for your version of
macOS and double-click it. Follow the instructions the installer displays
on the screen to install Python, as listed here:

1.	 When the DMG package opens in a new window, double-click the
Python.mpkg file. You may have to enter the administrator password.

2.	 Accept the default options for the next several windows by clicking
Continue and click Agree to accept the license.

3.	 On the final window, click Install.

If you’re running Ubuntu, you can install Python from the Terminal
by following these steps:

1.	 Open the Terminal window.

2.	 Enter sudo apt-get install python3.

3.	 Enter sudo apt-get install idle3.

4.	 Enter sudo apt-get install python3-pip.

Downloading and Installing Mu
While the Python interpreter is the software that runs your Python programs,
the Mu editor software is where you’ll enter your programs, much the way you
type in a word processor. You can download Mu from https://codewith.mu/.

On Windows and macOS, download the installer for your operating
system and then run it by double-clicking the installer file. If you are on
macOS, running the installer opens a window where you must drag the
Mu icon to the Applications folder icon to continue the installation. If
you are on Ubuntu, you’ll need to install Mu as a Python package. In that
case, click the Instructions button in the Python Package section of the
download page.

Starting Mu
Once it’s installed, let’s start Mu.

•	 On Windows 7 or later, click the Start icon in the lower-left corner of
your screen, enter Mu in the search box, and select it.

Introduction xxxv

•	 On macOS, open the Finder window, click Applications, and then
click mu-editor.

•	 On Ubuntu, select ApplicationsAccessories4Terminal and then
enter python3 –m mu.

The first time Mu runs, a Select Mode window will appear with options
Adafruit CircuitPython, BBC micro:bit, Pygame Zero, and Python 3. Select
Python 3. You can always change the mode later by clicking the Mode button
at the top of the editor window.

N O T E 	 You’ll need to download Mu version 1.10.0 or later in order to install the third-party
modules featured in this book. As of this writing, 1.10.0 is an alpha release and is
listed on the download page as a separate link from the main download links.

Starting IDLE
This book uses Mu as an editor and interactive shell. However, you can use
any number of editors for writing Python code. The Integrated Development
and Learning Environment (IDLE) software installs along with Python, and it
can serve as a second editor if for some reason you can’t get Mu installed or
working. Let’s start IDLE now.

•	 On Windows 7 or later, click the Start icon in the lower-left cor-
ner of your screen, enter IDLE in the search box, and select IDLE
(Python GUI).

•	 On macOS, open the Finder window, click Applications, click
Python 3.8, and then click the IDLE icon.

•	 On Ubuntu, select ApplicationsAccessories4Terminal and then
enter idle3. (You may also be able to click Applications at the top of
the screen, select Programming, and then click IDLE 3.)

The Interactive Shell
When you run Mu, the window that appears is called the file editor window. You
can open the interactive shell by clicking the REPL button. A shell is a program
that lets you type instructions into the computer, much like the Terminal or
Command Prompt on macOS and Windows, respectively. Python’s interactive
shell lets you enter instructions for the Python interpreter software to run.
The computer reads the instructions you enter and runs them immediately.

In Mu, the interactive shell is a pane in the lower half of the window
with the following text:

Jupyter QtConsole 4.3.1
Python 3.6.3 (v3.6.3:2c5fed8, Oct 3 2017, 18:11:49) [MSC v.1900 64 bit
(AMD64)]
Type 'copyright', 'credits' or 'license' for more information

xxxvi Introduction

IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

If you run IDLE, the interactive shell is the window that first appears.
It should be mostly blank except for text that looks something like this:

Python 3.8.0b1 (tags/v3.8.0b1:3b5deb0116, Jun 4 2019, 19:52:55) [MSC v.1916
64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

In [1]: and >>> are called prompts. The examples in this book will
use the >>> prompt for the interactive shell since it’s more common. If
you run Python from the Terminal or Command Prompt, they’ll use the
>>> prompt, as well. The In [1]: prompt was invented by Jupyter Notebook,
another popular Python editor.

For example, enter the following into the interactive shell next to
the prompt:

>>> print('Hello, world!')

After you type that line and press enter, the interactive shell should
display this in response:

>>> print('Hello, world!')
Hello, world!

You’ve just given the computer an instruction, and it did what you told
it to do!

Installing Third-Party Modules
Some Python code requires your program to import modules. Some of
these modules come with Python, but others are third-party modules cre-
ated by developers outside of the Python core dev team. Appendix A has
detailed instructions on how to use the pip program (on Windows) or pip3
program (on macOS and Linux) to install third-party modules. Consult
Appendix A when this book instructs you to install a particular third-party
module.

How to Find Help
Programmers tend to learn by searching the internet for answers to their
questions. This is quite different from the way many people are accustomed
to learning—through an in-person teacher who lectures and can answer
questions. What’s great about using the internet as a schoolroom is that
there are whole communities of folks who can answer your questions.

Introduction xxxvii

Indeed, your questions have probably already been answered, and the
answers are waiting online for you to find them. If you encounter an error
message or have trouble making your code work, you won’t be the first per-
son to have your problem, and finding a solution is easier than you might
think.

For example, let’s cause an error on purpose: enter '42' + 3 into the
interactive shell. You don’t need to know what this instruction means right
now, but the result should look like this:

>>> '42' + 3
u Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>
 '42' + 3

v TypeError: Can't convert 'int' object to str implicitly
>>>

The error message v appears because Python couldn’t understand
your instruction. The traceback part u of the error message shows the spe-
cific instruction and line number that Python had trouble with. If you’re
not sure what to make of a particular error message, search for it online.
Enter “TypeError: Can’t convert ‘int’ object to str implicitly” (including
the quotes) into your favorite search engine, and you should see tons of
links explaining what the error message means and what causes it, as shown
in Figure 0-2.

Figure 0-2: The Google results for an error message can be very helpful.

xxxviii Introduction

You’ll often find that someone else had the same question as you and
that some other helpful person has already answered it. No one person can
know everything about programming, so an everyday part of any software
developer’s job is looking up answers to technical questions.

Asking Smart Programming Questions
If you can’t find the answer by searching online, try asking people in a
web forum such as Stack Overflow (https://stackoverflow.com/) or the “learn
programming” subreddit at https://reddit.com/r/learnprogramming/. But keep
in mind there are smart ways to ask programming questions that help oth-
ers help you. To begin with, be sure to read the FAQ sections at these web-
sites about the proper way to post questions.

When asking programming questions, remember to do the following:

•	 Explain what you are trying to do, not just what you did. This lets your
helper know if you are on the wrong track.

•	 Specify the point at which the error happens. Does it occur at the very
start of the program or only after you do a certain action?

•	 Copy and paste the entire error message and your code to https://pastebin​
.com/ or https://gist.github.com/.

These websites make it easy to share large amounts of code with
people online, without losing any text formatting. You can then put
the URL of the posted code in your email or forum post. For example,
here some pieces of code I’ve posted: https://pastebin.com/SzP2DbFx/ and
https://gist.github.com/asweigart/6912168/.

•	 Explain what you’ve already tried to do to solve your problem. This tells
people you’ve already put in some work to figure things out on your own.

•	 List the version of Python you’re using. (There are some key differences
between version 2 Python interpreters and version 3 Python interpret-
ers.) Also, say which operating system and version you’re running.

•	 If the error came up after you made a change to your code, explain
exactly what you changed.

•	 Say whether you’re able to reproduce the error every time you run the
program or whether it happens only after you perform certain actions.
If the latter, then explain what those actions are.

Always follow good online etiquette as well. For example, don’t post
your questions in all caps or make unreasonable demands of the people
trying to help you.

You can find more information on how to ask for programming
help in the blog post at https://autbor.com/help/. You can find a list of
frequently asked questions about programming at https://www.reddit.com​
/r/learnprogramming/wiki/faq/ and a similar list about getting a job in
software development at https://www.reddit.com/r/cscareerquestions/wiki/
index/.

https://stackoverflow.com/
https://pastebin.com/
https://pastebin.com/
https://www.reddit.com/r/learnprogramming/wiki/faq/
https://www.reddit.com/r/learnprogramming/wiki/faq/
https://www.reddit.com/r/cscareerquestions/wiki/index/
https://www.reddit.com/r/cscareerquestions/wiki/index/

Introduction xxxix

I love helping people discover Python. I write programming tutorials
on my blog at https://inventwithpython.com/blog/, and you can contact me
with questions at al@inventwithpython.com. Although, you may get a faster
response by posting your questions to https://reddit.com/r/inventwithpython/.

Summary
For most people, their computer is just an appliance instead of a tool. But
by learning how to program, you’ll gain access to one of the most powerful
tools of the modern world, and you’ll have fun along the way. Programming
isn’t brain surgery—it’s fine for amateurs to experiment and make mistakes.

This book assumes you have zero programming knowledge and will
teach you quite a bit, but you may have questions beyond its scope. Remember
that asking effective questions and knowing how to find answers are invalu-
able tools on your programming journey.

Let’s begin!

PART I
P Y T H O N P R O G R A M M I N G

B A S I C S

1
P Y T H O N B A S I C S

The Python programming language has
a wide range of syntactical constructions,

standard library functions, and interactive
development environment features. Fortunately,

you can ignore most of that; you just need to learn
enough to write some handy little programs.

You will, however, have to learn some basic programming concepts
before you can do anything. Like a wizard in training, you might think
these concepts seem arcane and tedious, but with some knowledge and
practice, you’ll be able to command your computer like a magic wand and
perform incredible feats.

This chapter has a few examples that encourage you to type into the
interactive shell, also called the REPL (Read-Evaluate-Print Loop), which
lets you run (or execute) Python instructions one at a time and instantly
shows you the results. Using the interactive shell is great for learning what
basic Python instructions do, so give it a try as you follow along. You’ll
remember the things you do much better than the things you only read.

4 Chapter 1

Entering Expressions into the Interactive Shell
You can run the interactive shell by launching the Mu editor, which you
should have downloaded when going through the setup instructions in the
Preface. On Windows, open the Start menu, type “Mu,” and open the Mu
app. On macOS, open your Applications folder and double-click Mu. Click
the New button and save an empty file as blank.py. When you run this blank
file by clicking the Run button or pressing F5, it will open the interactive
shell, which will open as a new pane that opens at the bottom of the Mu edi-
tor’s window. You should see a >>> prompt in the interactive shell.

Enter 2 + 2 at the prompt to have Python do some simple math. The
Mu window should now look like this:

>>> 2 + 2
4
>>>

In Python, 2 + 2 is called an expression, which is the most basic kind of
programming instruction in the language. Expressions consist of values
(such as 2) and operators (such as +), and they can always evaluate (that is,
reduce) down to a single value. That means you can use expressions any-
where in Python code that you could also use a value.

In the previous example, 2 + 2 is evaluated down to a single value, 4.
A single value with no operators is also considered an expression, though
it evaluates only to itself, as shown here:

>>> 2
2

E R RORS A R E OK AY !

Programs will crash if they contain code the computer can’t understand, which
will cause Python to show an error message. An error message won’t break
your computer, though, so don’t be afraid to make mistakes. A crash just means
the program stopped running unexpectedly.

If you want to know more about an error, you can search for the exact
error message text online for more information. You can also check out the
resources at https://nostarch.com/automatestuff2/ to see a list of common
Python error messages and their meanings.

Python Basics 5

You can use plenty of other operators in Python expressions, too. For
example, Table 1-1 lists all the math operators in Python.

Table 1-1: Math Operators from Highest to Lowest Precedence

Operator Operation Example Evaluates to . . .

** Exponent 2 ** 3 8

% Modulus/remainder 22 % 8 6

// Integer division/floored quotient 22 // 8 2

/ Division 22 / 8 2.75

* Multiplication 3 * 5 15

- Subtraction 5 - 2 3

+ Addition 2 + 2 4

The order of operations (also called precedence) of Python math operators
is similar to that of mathematics. The ** operator is evaluated first; the *,
/, //, and % operators are evaluated next, from left to right; and the + and -
operators are evaluated last (also from left to right). You can use parenthe-
ses to override the usual precedence if you need to. Whitespace in between
the operators and values doesn’t matter for Python (except for the indenta-
tion at the beginning of the line), but a single space is convention. Enter
the following expressions into the interactive shell:

>>> 2 + 3 * 6
20
>>> (2 + 3) * 6
30
>>> 48565878 * 578453
28093077826734
>>> 2 ** 8
256
>>> 23 / 7
3.2857142857142856
>>> 23 // 7
3
>>> 23 % 7
2
>>> 2 + 2
4
>>> (5 - 1) * ((7 + 1) / (3 - 1))
16.0

6 Chapter 1

In each case, you as the programmer must enter the expression, but
Python does the hard part of evaluating it down to a single value. Python
will keep evaluating parts of the expression until it becomes a single value,
as shown here:

(5 - 1) * ((7 + 1) / (3 - 1))

4 * ((7 + 1) / (3 - 1))

4 * () / (3 - 1)8

4 * () / ()8 2

4 * 4.0

16.0

These rules for putting operators and values together to form expres-
sions are a fundamental part of Python as a programming language, just
like the grammar rules that help us communicate. Here’s an example:

This is a grammatically correct English sentence.

This grammatically is sentence not English correct a.

The second line is difficult to parse because it doesn’t follow the rules
of English. Similarly, if you enter a bad Python instruction, Python won’t
be able to understand it and will display a SyntaxError error message, as
shown here:

>>> 5 +
 File "<stdin>", line 1
 5 +
 ^
SyntaxError: invalid syntax
>>> 42 + 5 + * 2
 File "<stdin>", line 1
 42 + 5 + * 2
 ^
SyntaxError: invalid syntax

You can always test to see whether an instruction works by entering it
into the interactive shell. Don’t worry about breaking the computer: the
worst that could happen is that Python responds with an error message.
Professional software developers get error messages while writing code
all the time.

Python Basics 7

The Integer, Floating-Point, and String Data Types
Remember that expressions are just values combined with operators, and
they always evaluate down to a single value. A data type is a category for values,
and every value belongs to exactly one data type. The most common data
types in Python are listed in Table 1-2. The values -2 and 30, for example, are
said to be integer values. The integer (or int) data type indicates values that
are whole numbers. Numbers with a decimal point, such as 3.14, are called
floating-point numbers (or floats). Note that even though the value 42 is an
integer, the value 42.0 would be a floating-point number.

Table 1-2: Common Data Types

Data type Examples

Integers -2, -1, 0, 1, 2, 3, 4, 5

Floating-point numbers -1.25, -1.0, -0.5, 0.0, 0.5, 1.0, 1.25

Strings 'a', 'aa', 'aaa', 'Hello!', '11 cats'

Python programs can also have text values called strings, or strs (pro-
nounced “stirs”). Always surround your string in single quote (') characters
(as in 'Hello' or 'Goodbye cruel world!') so Python knows where the string
begins and ends. You can even have a string with no characters in it, '',
called a blank string or an empty string. Strings are explained in greater detail
in Chapter 4.

If you ever see the error message SyntaxError: EOL while scanning string
literal, you probably forgot the final single quote character at the end of
the string, such as in this example:

>>> 'Hello, world!
SyntaxError: EOL while scanning string literal

String Concatenation and Replication
The meaning of an operator may change based on the data types of the
values next to it. For example, + is the addition operator when it operates on
two integers or floating-point values. However, when + is used on two string
values, it joins the strings as the string concatenation operator. Enter the fol-
lowing into the interactive shell:

>>> 'Alice' + 'Bob'
'AliceBob'

8 Chapter 1

The expression evaluates down to a single, new string value that com-
bines the text of the two strings. However, if you try to use the + operator on
a string and an integer value, Python will not know how to handle this, and
it will display an error message.

>>> 'Alice' + 42
Traceback (most recent call last):
 File "<pyshell#0>", line 1, in <module>
 'Alice' + 42
TypeError: can only concatenate str (not "int") to str

The error message can only concatenate str (not "int") to str means
that Python thought you were trying to concatenate an integer to the
string 'Alice'. Your code will have to explicitly convert the integer to
a string because Python cannot do this automatically. (Converting data
types will be explained in “Dissecting Your Program” on page 13 when
we talk about the str(), int(), and float() functions.)

The * operator multiplies two integer or floating-point values. But
when the * operator is used on one string value and one integer value,
it becomes the string replication operator. Enter a string multiplied by a
number into the interactive shell to see this in action.

>>> 'Alice' * 5
'AliceAliceAliceAliceAlice'

The expression evaluates down to a single string value that repeats the
original string a number of times equal to the integer value. String replica-
tion is a useful trick, but it’s not used as often as string concatenation.

The * operator can be used with only two numeric values (for multipli-
cation), or one string value and one integer value (for string replication).
Otherwise, Python will just display an error message, like the following:

>>> 'Alice' * 'Bob'
Traceback (most recent call last):
 File "<pyshell#32>", line 1, in <module>
 'Alice' * 'Bob'
TypeError: can't multiply sequence by non-int of type 'str'
>>> 'Alice' * 5.0
Traceback (most recent call last):
 File "<pyshell#33>", line 1, in <module>
 'Alice' * 5.0
TypeError: can't multiply sequence by non-int of type 'float'

It makes sense that Python wouldn’t understand these expressions:
you can’t multiply two words, and it’s hard to replicate an arbitrary string
a fractional number of times.

Python Basics 9

Storing Values in Variables
A variable is like a box in the computer’s memory where you can store a
single value. If you want to use the result of an evaluated expression later
in your program, you can save it inside a variable.

Assignment Statements
You’ll store values in variables with an assignment statement. An assignment
statement consists of a variable name, an equal sign (called the assignment
operator), and the value to be stored. If you enter the assignment state-
ment spam = 42, then a variable named spam will have the integer value 42
stored in it.

Think of a variable as a labeled box that a value is placed in, as in
Figure 1-1.

Figure 1-1: spam = 42 is like telling the program,
“The variable spam now has the integer value 42 in it.”

For example, enter the following into the interactive shell:

 >>> spam = 40
>>> spam
40
>>> eggs = 2

 >>> spam + eggs
42
>>> spam + eggs + spam
82

 >>> spam = spam + 2
>>> spam
42

10 Chapter 1

A variable is initialized (or created) the first time a value is stored in it .
After that, you can use it in expressions with other variables and values .
When a variable is assigned a new value , the old value is forgotten, which
is why spam evaluated to 42 instead of 40 at the end of the example. This is
called overwriting the variable. Enter the following code into the interactive
shell to try overwriting a string:

>>> spam = 'Hello'
>>> spam
'Hello'
>>> spam = 'Goodbye'
>>> spam
'Goodbye'

Just like the box in Figure 1-2, the spam variable in this example stores
'Hello' until you replace the string with 'Goodbye'.

Figure 1-2: When a new value is assigned to a variable,
the old one is forgotten.

Variable Names
A good variable name describes the data it contains. Imagine that you
moved to a new house and labeled all of your moving boxes as Stuff. You’d
never find anything! Most of this book’s examples (and Python’s documen-
tation) use generic variable names like spam, eggs, and bacon, which come
from the Monty Python “Spam” sketch. But in your programs, a descriptive
name will help make your code more readable.

Python Basics 11

Though you can name your variables almost anything, Python does
have some naming restrictions. Table 1-3 has examples of legal variable
names. You can name a variable anything as long as it obeys the following
three rules:

•	 It can be only one word with no spaces.

•	 It can use only letters, numbers, and the underscore (_) character.

•	 It can’t begin with a number.

Table 1-3: Valid and Invalid Variable Names

Valid variable names Invalid variable names

current_balance current-balance (hyphens are not allowed)

currentBalance current balance (spaces are not allowed)

account4 4account (can’t begin with a number)

_42 42 (can’t begin with a number)

TOTAL_SUM TOTAL_$UM (special characters like $ are not allowed)

hello 'hello' (special characters like ' are not allowed)

Variable names are case-sensitive, meaning that spam, SPAM, Spam, and sPaM
are four different variables. Though Spam is a valid variable you can use in a pro-
gram, it is a Python convention to start your variables with a lowercase letter.

This book uses camelcase for variable names instead of underscores; that
is, variables lookLikeThis instead of looking_like_this. Some experienced pro-
grammers may point out that the official Python code style, PEP 8, says that
underscores should be used. I unapologetically prefer camelcase and point
to the “A Foolish Consistency Is the Hobgoblin of Little Minds” section in
PEP 8 itself:

Consistency with the style guide is important. But most impor-
tantly: know when to be inconsistent—sometimes the style guide
just doesn’t apply. When in doubt, use your best judgment.

Your First Program
While the interactive shell is good for running Python instructions one at
a time, to write entire Python programs, you’ll type the instructions into
the file editor. The file editor is similar to text editors such as Notepad or
TextMate, but it has some features specifically for entering source code. To
open a new file in Mu, click the New button on the top row.

The window that appears should contain a cursor awaiting your input,
but it’s different from the interactive shell, which runs Python instructions

12 Chapter 1

as soon as you press enter. The file editor lets you type in many instruc-
tions, save the file, and run the program. Here’s how you can tell the differ-
ence between the two:

•	 The interactive shell window will always be the one with the >>> prompt.

•	 The file editor window will not have the >>> prompt.

Now it’s time to create your first program! When the file editor window
opens, enter the following into it:

 # This program says hello and asks for my name.

 print('Hello, world!')
print('What is your name?') # ask for their name

 myName = input()
 print('It is good to meet you, ' + myName)
 print('The length of your name is:')

print(len(myName))
 print('What is your age?') # ask for their age

myAge = input()
print('You will be ' + str(int(myAge) + 1) + ' in a year.')

Once you’ve entered your source code, save it so that you won’t have
to retype it each time you start Mu. Click the Save button, enter hello.py in
the File Name field, and then click Save.

You should save your programs every once in a while as you type them.
That way, if the computer crashes or you accidentally exit Mu, you won’t
lose the code. As a shortcut, you can press ctrl-S on Windows and Linux
or -S on macOS to save your file.

Once you’ve saved, let’s run our program. Press the F5 key. Your pro-
gram should run in the interactive shell window. Remember, you have to
press F5 from the file editor window, not the interactive shell window. Enter
your name when your program asks for it. The program’s output in the
interactive shell should look something like this:

Python 3.7.0b4 (v3.7.0b4:eb96c37699, May 2 2018, 19:02:22) [MSC v.1913 64 bit
(AMD64)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART ================================
>>>
Hello, world!
What is your name?
Al
It is good to meet you, Al
The length of your name is:
2
What is your age?
4
You will be 5 in a year.
>>>

Python Basics 13

When there are no more lines of code to execute, the Python program
terminates; that is, it stops running. (You can also say that the Python pro-
gram exits.)

You can close the file editor by clicking the X at the top of the window.
To reload a saved program, select File4Open... from the menu. Do that now,
and in the window that appears, choose hello.py and click the Open button.
Your previously saved hello.py program should open in the file editor window.

You can view the execution of a program using the Python Tutor visu-
alization tool at http://pythontutor.com/. You can see the execution of this
particular program at https://autbor.com/hellopy/. Click the forward button
to move through each step of the program’s execution. You’ll be able to
see how the variables’ values and the output change.

Dissecting Your Program
With your new program open in the file editor, let’s take a quick tour of the
Python instructions it uses by looking at what each line of code does.

Comments
The following line is called a comment.

 # This program says hello and asks for my name.

Python ignores comments, and you can use them to write notes or
remind yourself what the code is trying to do. Any text for the rest of the
line following a hash mark (#) is part of a comment.

Sometimes, programmers will put a # in front of a line of code to tem-
porarily remove it while testing a program. This is called commenting out
code, and it can be useful when you’re trying to figure out why a program
isn’t working. You can remove the # later when you are ready to put the
line back in.

Python also ignores the blank line after the comment. You can add as
many blank lines to your program as you want. This can make your code
easier to read, like paragraphs in a book.

The print() Function
The print() function displays the string value inside its parentheses on
the screen.

 print('Hello, world!')
print('What is your name?') # ask for their name

The line print('Hello, world!') means “Print out the text in the string
'Hello, world!'.” When Python executes this line, you say that Python is
calling the print() function and the string value is being passed to the func-
tion. A value that is passed to a function call is an argument. Notice that

14 Chapter 1

the quotes are not printed to the screen. They just mark where the string
begins and ends; they are not part of the string value.

N O T E 	 You can also use this function to put a blank line on the screen; just call print()
with nothing in between the parentheses.

When you write a function name, the opening and closing parentheses at
the end identify it as the name of a function. This is why in this book, you’ll
see print() rather than print. Chapter 3 describes functions in more detail.

The input() Function
The input() function waits for the user to type some text on the keyboard
and press enter.

 myName = input()

This function call evaluates to a string equal to the user’s text, and the
line of code assigns the myName variable to this string value.

You can think of the input() function call as an expression that evalu-
ates to whatever string the user typed in. If the user entered 'Al', then the
expression would evaluate to myName = 'Al'.

If you call input() and see an error message, like NameError: name 'Al'
is not defined, the problem is that you’re running the code with Python 2
instead of Python 3.

Printing the User’s Name
The following call to print() actually contains the expression 'It is good to
meet you, ' + myName between the parentheses.

 print('It is good to meet you, ' + myName)

Remember that expressions can always evaluate to a single value. If 'Al'
is the value stored in myName on line , then this expression evaluates to 'It
is good to meet you, Al'. This single string value is then passed to print(),
which prints it on the screen.

The len() Function
You can pass the len() function a string value (or a variable containing a
string), and the function evaluates to the integer value of the number of
characters in that string.

 print('The length of your name is:')
print(len(myName))

Python Basics 15

Enter the following into the interactive shell to try this:

>>> len('hello')
5
>>> len('My very energetic monster just scarfed nachos.')
46
>>> len('')
0

Just like those examples, len(myName) evaluates to an integer. It is then
passed to print() to be displayed on the screen. The print() function allows
you to pass it either integer values or string values, but notice the error that
shows up when you type the following into the interactive shell:

 >>> print('I am ' + 29 + ' years old.')
Traceback (most recent call last):
 File "<pyshell#6>", line 1, in <module>
 print('I am ' + 29 + ' years old.')
TypeError: can only concatenate str (not "int") to str

The print() function isn’t causing that error, but rather it’s the expres-
sion you tried to pass to print(). You get the same error message if you type
the expression into the interactive shell on its own.

>>> 'I am ' + 29 + ' years old.'
Traceback (most recent call last):
 File "<pyshell#7>", line 1, in <module>
 'I am ' + 29 + ' years old.'
TypeError: can only concatenate str (not "int") to str

Python gives an error because the + operator can only be used to add
two integers together or concatenate two strings. You can’t add an integer to
a string, because this is ungrammatical in Python. You can fix this by using a
string version of the integer instead, as explained in the next section.

The str(), int(), and float() Functions
If you want to concatenate an integer such as 29 with a string to pass to
print(), you’ll need to get the value '29', which is the string form of 29. The
str() function can be passed an integer value and will evaluate to a string
value version of the integer, as follows:

>>> str(29)
'29'
>>> print('I am ' + str(29) + ' years old.')
I am 29 years old.

16 Chapter 1

Because str(29) evaluates to '29', the expression 'I am ' + str(29) +
' years old.' evaluates to 'I am ' + '29' + ' years old.', which in turn
evaluates to 'I am 29 years old.'. This is the value that is passed to the
print() function.

The str(), int(), and float() functions will evaluate to the string, inte-
ger, and floating-point forms of the value you pass, respectively. Try con-
verting some values in the interactive shell with these functions and watch
what happens.

>>> str(0)
'0'
>>> str(-3.14)
'-3.14'
>>> int('42')
42
>>> int('-99')
-99
>>> int(1.25)
1
>>> int(1.99)
1
>>> float('3.14')
3.14
>>> float(10)
10.0

The previous examples call the str(), int(), and float() functions
and pass them values of the other data types to obtain a string, integer,
or floating-point form of those values.

The str() function is handy when you have an integer or float that you
want to concatenate to a string. The int() function is also helpful if you
have a number as a string value that you want to use in some mathematics.
For example, the input() function always returns a string, even if the user
enters a number. Enter spam = input() into the interactive shell and enter 101
when it waits for your text.

>>> spam = input()
101
>>> spam
'101'

The value stored inside spam isn’t the integer 101 but the string '101'.
If you want to do math using the value in spam, use the int() function to
get the integer form of spam and then store this as the new value in spam.

>>> spam = int(spam)
>>> spam
101

Now you should be able to treat the spam variable as an integer instead
of a string.

Python Basics 17

>>> spam * 10 / 5
202.0

Note that if you pass a value to int() that it cannot evaluate as an inte-
ger, Python will display an error message.

>>> int('99.99')
Traceback (most recent call last):
 File "<pyshell#18>", line 1, in <module>
 int('99.99')
ValueError: invalid literal for int() with base 10: '99.99'
>>> int('twelve')
Traceback (most recent call last):
 File "<pyshell#19>", line 1, in <module>
 int('twelve')
ValueError: invalid literal for int() with base 10: 'twelve'

The int() function is also useful if you need to round a floating-point
number down.

>>> int(7.7)
7
>>> int(7.7) + 1
8

You used the int() and str() functions in the last three lines of your
program to get a value of the appropriate data type for the code.

 print('What is your age?') # ask for their age
myAge = input()
print('You will be ' + str(int(myAge) + 1) + ' in a year.')

T E X T A ND NUMBE R EQUI VA L E NCE

Although the string value of a number is considered a completely different
value from the integer or floating-point version, an integer can be equal to
a floating point.

>>> 42 == '42'
False
>>> 42 == 42.0
True
>>> 42.0 == 0042.000
True

Python makes this distinction because strings are text, while integers and
floats are both numbers.

18 Chapter 1

The myAge variable contains the value returned from input(). Because the
input() function always returns a string (even if the user typed in a number),
you can use the int(myAge) code to return an integer value of the string in
myAge. This integer value is then added to 1 in the expression int(myAge) + 1.

The result of this addition is passed to the str() function: str(int(myAge)
+ 1). The string value returned is then concatenated with the strings 'You
will be ' and ' in a year.' to evaluate to one large string value. This large
string is finally passed to print() to be displayed on the screen.

Let’s say the user enters the string '4' for myAge. The string '4' is con-
verted to an integer, so you can add one to it. The result is 5. The str() func-
tion converts the result back to a string, so you can concatenate it with the
second string, 'in a year.', to create the final message. These evaluation
steps would look something like the following:

print('You will be ' + str(int(myAge) + 1) + ' in a year.')

print('You will be ' + str(int() + 1) + ' in a year.')

print('You will be ' + str() + ' in a year.')

print('You will be ' + str() + ' in a year.')

print('You will be ' + + ' in a year.')

'4'

'5'

print('You will be 5' + ' in a year.')

print('You will be 5 in a year.')

5

4 + 1

Summary
You can compute expressions with a calculator or enter string concatena-
tions with a word processor. You can even do string replication easily by
copying and pasting text. But expressions, and their component values—
operators, variables, and function calls—are the basic building blocks that
make programs. Once you know how to handle these elements, you will be
able to instruct Python to operate on large amounts of data for you.

It is good to remember the different types of operators (+, -, *, /, //,
%, and ** for math operations, and + and * for string operations) and the
three data types (integers, floating-point numbers, and strings) introduced
in this chapter.

I introduced a few different functions as well. The print() and input()
functions handle simple text output (to the screen) and input (from the
keyboard). The len() function takes a string and evaluates to an int of the
number of characters in the string. The str(), int(), and float() functions
will evaluate to the string, integer, or floating-point number form of the
value they are passed.

Python Basics 19

In the next chapter, you’ll learn how to tell Python to make intelli-
gent decisions about what code to run, what code to skip, and what code
to repeat based on the values it has. This is known as flow control, and it
allows you to write programs that make intelligent decisions.

Practice Questions

1.	 Which of the following are operators, and which are values?

*
'hello'
-88.8
-
/
+
5

2.	 Which of the following is a variable, and which is a string?

spam
'spam'

3.	 Name three data types.

4.	 What is an expression made up of? What do all expressions do?

5.	 This chapter introduced assignment statements, like spam = 10. What is
the difference between an expression and a statement?

6.	 What does the variable bacon contain after the following code runs?

bacon = 20
bacon + 1

7.	 What should the following two expressions evaluate to?

'spam' + 'spamspam'
'spam' * 3

8.	 Why is eggs a valid variable name while 100 is invalid?

9.	 What three functions can be used to get the integer, floating-point
number, or string version of a value?

20 Chapter 1

10.	 Why does this expression cause an error? How can you fix it?

'I have eaten ' + 99 + ' burritos.'

Extra credit: Search online for the Python documentation for the len()
function. It will be on a web page titled “Built-in Functions.” Skim the
list of other functions Python has, look up what the round() function
does, and experiment with it in the interactive shell.

2
F L O W C O N T R O L

So, you know the basics of individual
instructions and that a program is just a

series of instructions. But programming’s
real strength isn’t just running one instruction

after another like a weekend errand list. Based on
how expressions evaluate, a program can decide
to skip instructions, repeat them, or choose one of several instructions
to run. In fact, you almost never want your programs to start from the
first line of code and simply execute every line, straight to the end. Flow
control statements can decide which Python instructions to execute under
which conditions.

These flow control statements directly correspond to the symbols in
a flowchart, so I’ll provide flowchart versions of the code discussed in this
chapter. Figure 2-1 shows a flowchart for what to do if it’s raining. Follow
the path made by the arrows from Start to End.

22 Chapter 2

No

Yes

Yes

No

NoGo outside.

Wait a while.

Start

End

Is raining? Have umbrella?

Is raining? Yes

Figure 2-1: A flowchart to tell you what to do if it is raining

In a flowchart, there is usually more than one way to go from the start
to the end. The same is true for lines of code in a computer program.
Flowcharts represent these branching points with diamonds, while the
other steps are represented with rectangles. The starting and ending steps
are represented with rounded rectangles.

But before you learn about flow control statements, you first need to
learn how to represent those yes and no options, and you need to under-
stand how to write those branching points as Python code. To that end, let’s
explore Boolean values, comparison operators, and Boolean operators.

Boolean Values
While the integer, floating-point, and string data types have an unlimited
number of possible values, the Boolean data type has only two values: True
and False. (Boolean is capitalized because the data type is named after
mathematician George Boole.) When entered as Python code, the Boolean
values True and False lack the quotes you place around strings, and they
always start with a capital T or F, with the rest of the word in lowercase.
Enter the following into the interactive shell. (Some of these instructions
are intentionally incorrect, and they’ll cause error messages to appear.)

Flow Control 23

 >>> spam = True
>>> spam
True

 >>> true
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
 true
NameError: name 'true' is not defined

 >>> True = 2 + 2
SyntaxError: can't assign to keyword

Like any other value, Boolean values are used in expressions and can
be stored in variables . If you don’t use the proper case  or you try to use
True and False for variable names , Python will give you an error message.

Comparison Operators
Comparison operators, also called relational operators, compare two values and eval-
uate down to a single Boolean value. Table 2-1 lists the comparison operators.

Table 2-1: Comparison Operators

Operator Meaning

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

These operators evaluate to True or False depending on the values you
give them. Let’s try some operators now, starting with == and !=.

>>> 42 == 42
True
>>> 42 == 99
False
>>> 2 != 3
True
>>> 2 != 2
False

As you might expect, == (equal to) evaluates to True when the values
on both sides are the same, and != (not equal to) evaluates to True when
the two values are different. The == and != operators can actually work with
values of any data type.

24 Chapter 2

>>> 'hello' == 'hello'
True
>>> 'hello' == 'Hello'
False
>>> 'dog' != 'cat'
True
>>> True == True
True
>>> True != False
True
>>> 42 == 42.0
True

 >>> 42 == '42'
False

Note that an integer or floating-point value will always be unequal to a
string value. The expression 42 == '42'  evaluates to False because Python
considers the integer 42 to be different from the string '42'.

The <, >, <=, and >= operators, on the other hand, work properly only
with integer and floating-point values.

>>> 42 < 100
True
>>> 42 > 100
False
>>> 42 < 42
False
>>> eggCount = 42

 >>> eggCount <= 42
True
>>> myAge = 29

 >>> myAge >= 10
True

T HE DIF F E R E NCE BE T W E E N T HE == A ND = OPE R ATORS

You might have noticed that the == operator (equal to) has two equal signs,
while the = operator (assignment) has just one equal sign. It’s easy to confuse
these two operators with each other. Just remember these points:

•	 The == operator (equal to) asks whether two values are the same as
each other.

•	 The = operator (assignment) puts the value on the right into the variable
on the left.

To help remember which is which, notice that the == operator (equal to)
consists of two characters, just like the != operator (not equal to) consists of
two characters.

Flow Control 25

You’ll often use comparison operators to compare a variable’s value to
some other value, like in the eggCount <= 42  and myAge >= 10  examples.
(After all, instead of entering 'dog' != 'cat' in your code, you could have
just entered True.) You’ll see more examples of this later when you learn
about flow control statements.

Boolean Operators
The three Boolean operators (and, or, and not) are used to compare Boolean
values. Like comparison operators, they evaluate these expressions down
to a Boolean value. Let’s explore these operators in detail, starting with the
and operator.

Binary Boolean Operators
The and and or operators always take two Boolean values (or expressions), so
they’re considered binary operators. The and operator evaluates an expression
to True if both Boolean values are True; otherwise, it evaluates to False. Enter
some expressions using and into the interactive shell to see it in action.

>>> True and True
True
>>> True and False
False

A truth table shows every possible result of a Boolean operator. Table 2-2
is the truth table for the and operator.

Table 2-2: The and Operator’s Truth Table

Expression Evaluates to . . .

True and True True

True and False False

False and True False

False and False False

On the other hand, the or operator evaluates an expression to True if
either of the two Boolean values is True. If both are False, it evaluates to False.

>>> False or True
True
>>> False or False
False

You can see every possible outcome of the or operator in its truth table,
shown in Table 2-3.

26 Chapter 2

Table 2-3: The or Operator’s Truth Table

Expression Evaluates to . . .

True or True True

True or False True

False or True True

False or False False

The not Operator
Unlike and and or, the not operator operates on only one Boolean value (or
expression). This makes it a unary operator. The not operator simply evalu-
ates to the opposite Boolean value.

>>> not True
False

 >>> not not not not True
True

Much like using double negatives in speech and writing, you can nest
not operators , though there’s never not no reason to do this in real pro-
grams. Table 2-4 shows the truth table for not.

Table 2-4: The not Operator’s Truth Table

Expression Evaluates to . . .

not True False

not False True

Mixing Boolean and Comparison Operators
Since the comparison operators evaluate to Boolean values, you can use
them in expressions with the Boolean operators.

Recall that the and, or, and not operators are called Boolean operators
because they always operate on the Boolean values True and False. While
expressions like 4 < 5 aren’t Boolean values, they are expressions that evalu-
ate down to Boolean values. Try entering some Boolean expressions that
use comparison operators into the interactive shell.

>>> (4 < 5) and (5 < 6)
True
>>> (4 < 5) and (9 < 6)
False
>>> (1 == 2) or (2 == 2)
True

The computer will evaluate the left expression first, and then it will
evaluate the right expression. When it knows the Boolean value for each,

Flow Control 27

it will then evaluate the whole expression down to one Boolean value.
You can think of the computer’s evaluation process for (4 < 5) and (5 < 6)
as the following:

(4 < 5) and (5 < 6)

True and (5 < 6)

True and True

True

You can also use multiple Boolean operators in an expression, along
with the comparison operators:

>>> 2 + 2 == 4 and not 2 + 2 == 5 and 2 * 2 == 2 + 2
True

The Boolean operators have an order of operations just like the
math operators do. After any math and comparison operators evaluate,
Python evaluates the not operators first, then the and operators, and then
the or operators.

Elements of Flow Control
Flow control statements often start with a part called the condition and are
always followed by a block of code called the clause. Before you learn about
Python’s specific flow control statements, I’ll cover what a condition and a
block are.

Conditions
The Boolean expressions you’ve seen so far could all be considered con-
ditions, which are the same thing as expressions; condition is just a more
specific name in the context of flow control statements. Conditions always
evaluate down to a Boolean value, True or False. A flow control statement
decides what to do based on whether its condition is True or False, and
almost every flow control statement uses a condition.

Blocks of Code
Lines of Python code can be grouped together in blocks. You can tell when a
block begins and ends from the indentation of the lines of code. There are
three rules for blocks.

•	 Blocks begin when the indentation increases.

•	 Blocks can contain other blocks.

•	 Blocks end when the indentation decreases to zero or to a containing
block’s indentation.

28 Chapter 2

Blocks are easier to understand by looking at some indented code, so
let’s find the blocks in part of a small game program, shown here:

name = 'Mary'
password = 'swordfish'
if name == 'Mary':

  print('Hello, Mary')
 if password == 'swordfish':

  print('Access granted.')
 else:

  print('Wrong password.')

You can view the execution of this program at https://autbor.com/blocks/.
The first block of code  starts at the line print('Hello, Mary') and contains
all the lines after it. Inside this block is another block , which has only a
single line in it: print('Access Granted.'). The third block  is also one line
long: print('Wrong password.').

Program Execution
In the previous chapter’s hello.py program, Python started executing instruc-
tions at the top of the program going down, one after another. The program
execution (or simply, execution) is a term for the current instruction being exe-
cuted. If you print the source code on paper and put your finger on each line
as it is executed, you can think of your finger as the program execution.

Not all programs execute by simply going straight down, however. If you
use your finger to trace through a program with flow control statements,
you’ll likely find yourself jumping around the source code based on condi-
tions, and you’ll probably skip entire clauses.

Flow Control Statements
Now, let’s explore the most important piece of flow control: the statements
themselves. The statements represent the diamonds you saw in the flowchart
in Figure 2-1, and they are the actual decisions your programs will make.

if Statements
The most common type of flow control statement is the if statement. An if
statement’s clause (that is, the block following the if statement) will execute if
the statement’s condition is True. The clause is skipped if the condition is False.

In plain English, an if statement could be read as, “If this condition is
true, execute the code in the clause.” In Python, an if statement consists of
the following:

•	 The if keyword

•	 A condition (that is, an expression that evaluates to True or False)

Flow Control 29

•	 A colon

•	 Starting on the next line, an indented block of code (called the if clause)

For example, let’s say you have some code that checks to see whether
someone’s name is Alice. (Pretend name was assigned some value earlier.)

if name == 'Alice':
 print('Hi, Alice.')

All flow control statements end with a colon and are followed by a
new block of code (the clause). This if statement’s clause is the block with
print('Hi, Alice.'). Figure 2-2 shows what a flowchart of this code would
look like.

print('Hi, Alice.')

Start

End

name == 'Alice' True

False

Figure 2-2: The flowchart for an if statement

else Statements
An if clause can optionally be followed by an else statement. The else
clause is executed only when the if statement’s condition is False. In plain
English, an else statement could be read as, “If this condition is true, exe-
cute this code. Or else, execute that code.” An else statement doesn’t have
a condition, and in code, an else statement always consists of the following:

•	 The else keyword

•	 A colon

•	 Starting on the next line, an indented block of code (called the
else clause)

30 Chapter 2

Returning to the Alice example, let’s look at some code that uses an
else statement to offer a different greeting if the person’s name isn’t Alice.

if name == 'Alice':
 print('Hi, Alice.')
else:
 print('Hello, stranger.')

Figure 2-3 shows what a flowchart of this code would look like.

print('Hi, Alice.')

Start

End

name == 'Alice'

print('Hello, stranger.')

True

False

Figure 2-3: The flowchart for an else statement

elif Statements
While only one of the if or else clauses will execute, you may have a case
where you want one of many possible clauses to execute. The elif statement
is an “else if” statement that always follows an if or another elif statement. It
provides another condition that is checked only if all of the previous condi-
tions were False. In code, an elif statement always consists of the following:

•	 The elif keyword

•	 A condition (that is, an expression that evaluates to True or False)

•	 A colon

•	 Starting on the next line, an indented block of code (called the
elif clause)

Let’s add an elif to the name checker to see this statement in action.

if name == 'Alice':
 print('Hi, Alice.')

Flow Control 31

elif age < 12:
 print('You are not Alice, kiddo.')

This time, you check the person’s age, and the program will tell them
something different if they’re younger than 12. You can see the flowchart
for this in Figure 2-4.

print('Hi, Alice.')

Start

End

name == 'Alice'

print('You are not Alice, kiddo.')age < 12

True

False

True

False

Figure 2-4: The flowchart for an elif statement

The elif clause executes if age < 12 is True and name == 'Alice' is False.
However, if both of the conditions are False, then both of the clauses are
skipped. It is not guaranteed that at least one of the clauses will be executed.
When there is a chain of elif statements, only one or none of the clauses will
be executed. Once one of the statements’ conditions is found to be True, the
rest of the elif clauses are automatically skipped. For example, open a new
file editor window and enter the following code, saving it as vampire.py:

name = 'Carol'
age = 3000
if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')
elif age > 2000:

32 Chapter 2

 print('Unlike you, Alice is not an undead, immortal vampire.')
elif age > 100:
 print('You are not Alice, grannie.')

You can view the execution of this program at https://autbor.com/vampire/.
Here, I’ve added two more elif statements to make the name checker greet
a person with different answers based on age. Figure 2-5 shows the flowchart
for this.

print('Hi, Alice.')

End

name == 'Alice'

print('You are not Alice, kiddo.')age < 12

True

False

True

False

age > 100

True

False

print('You are not Alice, grannie.')

age > 2000

True

False

Start

print('Unlike you, Alice is not
an undead, immortal vampire.')

Figure 2-5: The flowchart for multiple elif statements in the vampire.py program

Flow Control 33

The order of the elif statements does matter, however. Let’s rearrange
them to introduce a bug. Remember that the rest of the elif clauses are
automatically skipped once a True condition has been found, so if you swap
around some of the clauses in vampire.py, you run into a problem. Change
the code to look like the following, and save it as vampire2.py:

name = 'Carol'
age = 3000
if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')

 elif age > 100:
 print('You are not Alice, grannie.')
elif age > 2000:
 print('Unlike you, Alice is not an undead, immortal vampire.')

You can view the execution of this program at https://autbor.com/vampire2/.
Say the age variable contains the value 3000 before this code is executed.
You might expect the code to print the string 'Unlike you, Alice is not
an undead, immortal vampire.'. However, because the age > 100 condition is
True (after all, 3,000 is greater than 100) , the string 'You are not Alice,
grannie.' is printed, and the rest of the elif statements are automatically
skipped. Remember that at most only one of the clauses will be executed,
and for elif statements, the order matters!

Figure 2-6 shows the flowchart for the previous code. Notice how the
diamonds for age > 100 and age > 2000 are swapped.

Optionally, you can have an else statement after the last elif statement.
In that case, it is guaranteed that at least one (and only one) of the clauses
will be executed. If the conditions in every if and elif statement are False,
then the else clause is executed. For example, let’s re-create the Alice pro-
gram to use if, elif, and else clauses.

name = 'Carol'
age = 3000
if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')
else:
 print('You are neither Alice nor a little kid.')

You can view the execution of this program at https://autbor.com
/littlekid/. Figure 2-7 shows the flowchart for this new code, which we’ll
save as littleKid.py.

In plain English, this type of flow control structure would be “If the
first condition is true, do this. Else, if the second condition is true, do that.
Otherwise, do something else.” When you use if, elif, and else statements
together, remember these rules about how to order them to avoid bugs like
the one in Figure 2-6. First, there is always exactly one if statement. Any

https://autbor.com/littlekid/
https://autbor.com/littlekid/

34 Chapter 2

elif statements you need should follow the if statement. Second, if you want
to be sure that at least one clause is executed, close the structure with an
else statement.

print('Hi, Alice.')

Start

End

print('You are not Alice, kiddo.')

True

False

True

False

print('Unlike you, Alice is not
an undead, immortal vampire.')

True

False

print('You are not Alice, grannie.')

False

X

name == 'Alice'

age < 12

age > 2000

age > 100

True

Figure 2-6: The flowchart for the vampire2.py program. The X path will logi-
cally never happen, because if age were greater than 2000, it would have
already been greater than 100.

Flow Control 35

print('Hi, Alice.')

Start

End

name == 'Alice'

print('You are not Alice, kiddo.')age < 12

True

False

True

False

print('You are neither Alice
nor a little kid.')

Figure 2-7: Flowchart for the previous littleKid.py program

while Loop Statements
You can make a block of code execute over and over again using a while
statement. The code in a while clause will be executed as long as the while
statement’s condition is True. In code, a while statement always consists of
the following:

•	 The while keyword

•	 A condition (that is, an expression that evaluates to True or False)

•	 A colon

•	 Starting on the next line, an indented block of code (called the
while clause)

36 Chapter 2

You can see that a while statement looks similar to an if statement. The
difference is in how they behave. At the end of an if clause, the program
execution continues after the if statement. But at the end of a while clause,
the program execution jumps back to the start of the while statement. The
while clause is often called the while loop or just the loop.

Let’s look at an if statement and a while loop that use the same condi-
tion and take the same actions based on that condition. Here is the code
with an if statement:

spam = 0
if spam < 5:
 print('Hello, world.')
 spam = spam + 1

Here is the code with a while statement:

spam = 0
while spam < 5:
 print('Hello, world.')
 spam = spam + 1

These statements are similar—both if and while check the value of spam,
and if it’s less than 5, they print a message. But when you run these two
code snippets, something very different happens for each one. For the if
statement, the output is simply "Hello, world.". But for the while statement,
it’s "Hello, world." repeated five times! Take a look at the flowcharts for
these two pieces of code, Figures 2-8 and 2-9, to see why this happens.

print('Hello, world.')

Start

End

spam < 5

spam = spam + 1

True

False

Figure 2-8: The flowchart for the if statement code

Flow Control 37

print('Hello, world.')

Start

End

spam < 5

spam = spam + 1

True

False

Figure 2-9: The flowchart for the while statement code

The code with the if statement checks the condition, and it prints
Hello, world. only once if that condition is true. The code with the while
loop, on the other hand, will print it five times. The loop stops after five
prints because the integer in spam increases by one at the end of each
loop iteration, which means that the loop will execute five times before
spam < 5 is False.

In the while loop, the condition is always checked at the start of each
iteration (that is, each time the loop is executed). If the condition is True,
then the clause is executed, and afterward, the condition is checked again.
The first time the condition is found to be False, the while clause is skipped.

An Annoying while Loop

Here’s a small example program that will keep asking you to type, literally,
your name. Select File4New to open a new file editor window, enter the fol-
lowing code, and save the file as yourName.py:

 name = ''
 while name != 'your name':

 print('Please type your name.')
  name = input()
 print('Thank you!')

You can view the execution of this program at https://autbor.com/yourname/.
First, the program sets the name variable  to an empty string. This is so

38 Chapter 2

that the name != 'your name' condition will evaluate to True and the program
execution will enter the while loop’s clause .

The code inside this clause asks the user to type their name, which is
assigned to the name variable . Since this is the last line of the block, the
execution moves back to the start of the while loop and reevaluates the
condition. If the value in name is not equal to the string 'your name', then
the condition is True, and the execution enters the while clause again.

But once the user types your name, the condition of the while loop will
be 'your name' != 'your name', which evaluates to False. The condition is
now False, and instead of the program execution reentering the while
loop’s clause, Python skips past it and continues running the rest of the
program . Figure 2-10 shows a flowchart for the yourName.py program.

print('Please type your name.')

Start

End

name != 'your name'

name = input()

True

False

print('Thank you!')

Figure 2-10: A flowchart of the yourName.py program

Now, let’s see yourName.py in action. Press F5 to run it, and enter
something other than your name a few times before you give the program
what it wants.

Please type your name.
Al
Please type your name.
Albert
Please type your name.
%#@#%*(^&!!!

Flow Control 39

Please type your name.
your name
Thank you!

If you never enter your name, then the while loop’s condition will never
be False, and the program will just keep asking forever. Here, the input()
call lets the user enter the right string to make the program move on. In
other programs, the condition might never actually change, and that can
be a problem. Let’s look at how you can break out of a while loop.

break Statements
There is a shortcut to getting the program execution to break out of a while
loop’s clause early. If the execution reaches a break statement, it immedi-
ately exits the while loop’s clause. In code, a break statement simply contains
the break keyword.

Pretty simple, right? Here’s a program that does the same thing as the
previous program, but it uses a break statement to escape the loop. Enter the
following code, and save the file as yourName2.py:

 while True:
 print('Please type your name.')

  name = input()
  if name == 'your name':
  break
 print('Thank you!')

You can view the execution of this program at https://autbor.com​/
yourname2/. The first line  creates an infinite loop ; it is a while loop whose
condition is always True. (The expression True, after all, always evaluates
down to the value True.) After the program execution enters this loop,
it will exit the loop only when a break statement is executed. (An infinite
loop that never exits is a common programming bug.)

Just like before, this program asks the user to enter your name . Now,
however, while the execution is still inside the while loop, an if statement
checks  whether name is equal to 'your name'. If this condition is True,
the break statement is run , and the execution moves out of the loop to
print('Thank you!') . Otherwise, the if statement’s clause that contains the
break statement is skipped, which puts the execution at the end of the while
loop. At this point, the program execution jumps back to the start of the
while statement  to recheck the condition. Since this condition is merely
the True Boolean value, the execution enters the loop to ask the user to type
your name again. See Figure 2-11 for this program’s flowchart.

Run yourName2.py, and enter the same text you entered for yourName.py.
The rewritten program should respond in the same way as the original.

https://autbor.com/yourname2/
https://autbor.com/yourname2/

40 Chapter 2

print('Please type your name.')

Start

End

True

name = input()

True

print('Thank you!')

name == 'your name' breakTrue

False

XFalse

Figure 2-11: The flowchart for the yourName2.py program with an infinite loop. Note
that the X path will logically never happen, because the loop condition is always True.

continue Statements
Like break statements, continue statements are used inside loops. When the
program execution reaches a continue statement, the program execution
immediately jumps back to the start of the loop and reevaluates the loop’s
condition. (This is also what happens when the execution reaches the end
of the loop.)

Let’s use continue to write a program that asks for a name and password.
Enter the following code into a new file editor window and save the pro-
gram as swordfish.py.

Flow Control 41

while True:
 print('Who are you?')
 name = input()

  if name != 'Joe':
  continue

 print('Hello, Joe. What is the password? (It is a fish.)')
  password = input()

 if password == 'swordfish':
  break
 print('Access granted.')

If the user enters any name besides Joe , the continue statement 
causes the program execution to jump back to the start of the loop. When
the program reevaluates the condition, the execution will always enter the
loop, since the condition is simply the value True. Once the user makes it
past that if statement, they are asked for a password . If the password
entered is swordfish, then the break statement  is run, and the execution
jumps out of the while loop to print Access granted . Otherwise, the execu-
tion continues to the end of the while loop, where it then jumps back to the
start of the loop. See Figure 2-12 for this program’s flowchart.

T R A PPE D IN A N INF INI T E LOOP?

If you ever run a program that has a bug causing it to get stuck in an infinite
loop, press ctrl-C or select Shell4Restart Shell from IDLE’s menu. This will send
a KeyboardInterrupt error to your program and cause it to stop immediately.
Try stopping a program by creating a simple infinite loop in the file editor, and
save the program as infiniteLoop.py.

while True:
 print('Hello, world!')

When you run this program, it will print Hello, world! to the screen
forever because the while statement’s condition is always True. ctrl-C is also
handy if you want to simply terminate your program immediately, even if it’s
not stuck in an infinite loop.

42 Chapter 2

print('Who are you?')

Start

End

True

name = input()

True

print('Access granted.')

name != 'Joe'continue True

X

print('Hello, Joe. What is the password? (It is a fish.)')

password = input()

password == 'swordfish'

break True

False

False

False

Figure 2-12: A flowchart for swordfish.py. The X path will logically never happen, because the
loop condition is always True.

Flow Control 43

Run this program and give it some input. Until you claim to be Joe, the
program shouldn’t ask for a password, and once you enter the correct pass-
word, it should exit.

Who are you?
I'm fine, thanks. Who are you?
Who are you?
Joe
Hello, Joe. What is the password? (It is a fish.)
Mary
Who are you?
Joe
Hello, Joe. What is the password? (It is a fish.)
swordfish
Access granted.

You can view the execution of this program at https://autbor.com/hellojoe/.

“T RU T H Y ” A ND “FA L SE Y ” VA LUE S

Conditions will consider some values in other data types equivalent to True
and False. When used in conditions, 0, 0.0, and '' (the empty string) are
considered False, while all other values are considered True. For example,
look at the following program:

name = ''
 while not name:
 print('Enter your name:')
 name = input()
print('How many guests will you have?')
numOfGuests = int(input())
 if numOfGuests:
  print('Be sure to have enough room for all your guests.')
print('Done')

You can view the execution of this program at https://autbor.com​
/howmanyguests/. If the user enters a blank string for name, then the while
statement’s condition will be True , and the program continues to ask
for a name. If the value for numOfGuests is not 0 , then the condition is
considered to be True, and the program will print a reminder for the user .

You could have entered not name != '' instead of not name, and
numOfGuests != 0 instead of numOfGuests, but using the truthy and falsey
values can make your code easier to read.

https://autbor.com/howmanyguests/
https://autbor.com/howmanyguests/

44 Chapter 2

for Loops and the range() Function
The while loop keeps looping while its condition is True (which is the rea-
son for its name), but what if you want to execute a block of code only a
certain number of times? You can do this with a for loop statement and the
range() function.

In code, a for statement looks something like for i in range(5): and
includes the following:

•	 The for keyword

•	 A variable name

•	 The in keyword

•	 A call to the range() method with up to three integers passed to it

•	 A colon

•	 Starting on the next line, an indented block of code (called the for clause)

Let’s create a new program called fiveTimes.py to help you see a for loop
in action.

print('My name is')
for i in range(5):
 print('Jimmy Five Times (' + str(i) + ')')

You can view the execution of this program at https://autbor.com/fivetimesfor/.
The code in the for loop’s clause is run five times. The first time it is run,
the variable i is set to 0. The print() call in the clause will print Jimmy Five
Times (0). After Python finishes an iteration through all the code inside the
for loop’s clause, the execution goes back to the top of the loop, and the for
statement increments i by one. This is why range(5) results in five iterations
through the clause, with i being set to 0, then 1, then 2, then 3, and then
4. The variable i will go up to, but will not include, the integer passed to
range(). Figure 2-13 shows a flowchart for the fiveTimes.py program.

When you run this program, it should print Jimmy Five Times followed by
the value of i five times before leaving the for loop.

My name is
Jimmy Five Times (0)
Jimmy Five Times (1)
Jimmy Five Times (2)
Jimmy Five Times (3)
Jimmy Five Times (4)

N O T E 	 You can use break and continue statements inside for loops as well. The continue
statement will continue to the next value of the for loop’s counter, as if the program
execution had reached the end of the loop and returned to the start. In fact, you can
use continue and break statements only inside while and for loops. If you try to use
these statements elsewhere, Python will give you an error.

Flow Control 45

print('Jimmy Five Times (' + str(i) + ')')

Start

End

for i in range (5)

Looping

Done looping

print('My name is')

Figure 2-13: The flowchart for fiveTimes.py

As another for loop example, consider this story about the mathemati-
cian Carl Friedrich Gauss. When Gauss was a boy, a teacher wanted to give
the class some busywork. The teacher told them to add up all the numbers
from 0 to 100. Young Gauss came up with a clever trick to figure out the
answer in a few seconds, but you can write a Python program with a for
loop to do this calculation for you.

 total = 0
 for num in range(101):
  total = total + num
 print(total)

The result should be 5,050. When the program first starts, the total
variable is set to 0 . The for loop  then executes total = total + num 
100 times. By the time the loop has finished all of its 100 iterations, every
integer from 0 to 100 will have been added to total. At this point, total is
printed to the screen . Even on the slowest computers, this program takes
less than a second to complete.

(Young Gauss figured out a way to solve the problem in seconds. There
are 50 pairs of numbers that add up to 101: 1 + 100, 2 + 99, 3 + 98, and so
on, until 50 + 51. Since 50 × 101 is 5,050, the sum of all the numbers from
0 to 100 is 5,050. Clever kid!)

46 Chapter 2

An Equivalent while Loop

You can actually use a while loop to do the same thing as a for loop; for loops
are just more concise. Let’s rewrite fiveTimes.py to use a while loop equivalent
of a for loop.

print('My name is')
i = 0
while i < 5:
 print('Jimmy Five Times (' + str(i) + ')')
 i = i + 1

You can view the execution of this program at https://autbor.com​
/fivetimeswhile/. If you run this program, the output should look the same
as the fiveTimes.py program, which uses a for loop.

The Starting, Stopping, and Stepping Arguments to range()

Some functions can be called with multiple arguments separated by
a comma, and range() is one of them. This lets you change the integer
passed to range() to follow any sequence of integers, including starting
at a number other than zero.

for i in range(12, 16):
 print(i)

The first argument will be where the for loop’s variable starts, and the
second argument will be up to, but not including, the number to stop at.

12
13
14
15

The range() function can also be called with three arguments. The first
two arguments will be the start and stop values, and the third will be the
step argument. The step is the amount that the variable is increased by after
each iteration.

for i in range(0, 10, 2):
 print(i)

So calling range(0, 10, 2) will count from zero to eight by intervals of two.

0
2
4
6
8

https://autbor.com/fivetimeswhile/
https://autbor.com/fivetimeswhile/

Flow Control 47

The range() function is flexible in the sequence of numbers it produces
for for loops. For example (I never apologize for my puns), you can even use
a negative number for the step argument to make the for loop count down
instead of up.

for i in range(5, -1, -1):
 print(i)

This for loop would have the following output:

5
4
3
2
1
0

Running a for loop to print i with range(5, -1, -1) should print from
five down to zero.

Importing Modules
All Python programs can call a basic set of functions called built-in functions,
including the print(), input(), and len() functions you’ve seen before. Python
also comes with a set of modules called the standard library. Each module is
a Python program that contains a related group of functions that can be
embedded in your programs. For example, the math module has mathematics-
related functions, the random module has random number-related functions,
and so on.

Before you can use the functions in a module, you must import the
module with an import statement. In code, an import statement consists of
the following:

•	 The import keyword

•	 The name of the module

•	 Optionally, more module names, as long as they are separated by
commas

Once you import a module, you can use all the cool functions of that
module. Let’s give it a try with the random module, which will give us access
to the random.randint() function.

Enter this code into the file editor, and save it as printRandom.py:

import random
for i in range(5):
 print(random.randint(1, 10))

48 Chapter 2

When you run this program, the output will look something like this:

4
1
8
4
1

You can view the execution of this program at https://autbor.com​/
printrandom/. The random.randint() function call evaluates to a random
integer value between the two integers that you pass it. Since randint() is in
the random module, you must first type random. in front of the function name
to tell Python to look for this function inside the random module.

Here’s an example of an import statement that imports four different
modules:

import random, sys, os, math

Now we can use any of the functions in these four modules. We’ll learn
more about them later in the book.

from import Statements
An alternative form of the import statement is composed of the from key-
word, followed by the module name, the import keyword, and a star; for
example, from random import *.

With this form of import statement, calls to functions in random will not
need the random. prefix. However, using the full name makes for more read-
able code, so it is better to use the import random form of the statement.

DON’T OV E RW R I T E MODUL E N A ME S

When you save your Python scripts, take care not to give them a name that is
used by one of Python’s modules, such as random.py, sys.py, os.py, or math.py.
If you accidentally name one of your programs, say, random.py, and use an
import random statement in another program, your program would import your
random.py file instead of Python’s random module. This can lead to errors such
as AttributeError: module 'random' has no attribute 'randint', since
your random.py doesn’t have the functions that the real random module has.
Don’t use the names of any built-in Python functions either, such as print()
or input().

Problems like these are uncommon, but can be tricky to solve. As you gain
more programming experience, you’ll become more aware of the standard
names used by Python’s modules and functions, and will run into these prob-
lems less frequently.

https://autbor.com/printrandom/
https://autbor.com/printrandom/

Flow Control 49

Ending a Program Early with the sys.exit() Function
The last flow control concept to cover is how to terminate the program.
Programs always terminate if the program execution reaches the bottom
of the instructions. However, you can cause the program to terminate, or
exit, before the last instruction by calling the sys.exit() function. Since this
function is in the sys module, you have to import sys before your program
can use it.

Open a file editor window and enter the following code, saving it as
exitExample.py:

import sys

while True:
 print('Type exit to exit.')
 response = input()
 if response == 'exit':
 sys.exit()
 print('You typed ' + response + '.')

Run this program in IDLE. This program has an infinite loop with no
break statement inside. The only way this program will end is if the execu-
tion reaches the sys.exit() call. When response is equal to exit, the line con-
taining the sys.exit() call is executed. Since the response variable is set by
the input() function, the user must enter exit in order to stop the program.

A Short Program: Guess the Number
The examples I’ve shown you so far are useful for introducing basic con-
cepts, but now let’s see how everything you’ve learned comes together in a
more complete program. In this section, I’ll show you a simple “guess the
number” game. When you run this program, the output will look some-
thing like this:

I am thinking of a number between 1 and 20.
Take a guess.
10
Your guess is too low.
Take a guess.
15
Your guess is too low.
Take a guess.
17
Your guess is too high.
Take a guess.
16
Good job! You guessed my number in 4 guesses!

50 Chapter 2

Enter the following source code into the file editor, and save the file as
guessTheNumber.py:

This is a guess the number game.
import random
secretNumber = random.randint(1, 20)
print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.
for guessesTaken in range(1, 7):
 print('Take a guess.')
 guess = int(input())

 if guess < secretNumber:
 print('Your guess is too low.')
 elif guess > secretNumber:
 print('Your guess is too high.')
 else:
 break # This condition is the correct guess!

if guess == secretNumber:
 print('Good job! You guessed my number in ' + str(guessesTaken) + '
guesses!')
else:
 print('Nope. The number I was thinking of was ' + str(secretNumber))

You can view the execution of this program at https://autbor.com​
/guessthenumber/. Let’s look at this code line by line, starting at the top.

This is a guess the number game.
import random
secretNumber = random.randint(1, 20)

First, a comment at the top of the code explains what the program
does. Then, the program imports the random module so that it can use
the random.randint() function to generate a number for the user to guess.
The return value, a random integer between 1 and 20, is stored in the
variable secretNumber.

print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.
for guessesTaken in range(1, 7):
 print('Take a guess.')
 guess = int(input())

The program tells the player that it has come up with a secret number
and will give the player six chances to guess it. The code that lets the player
enter a guess and checks that guess is in a for loop that will loop at most six
times. The first thing that happens in the loop is that the player types in a
guess. Since input() returns a string, its return value is passed straight into

https://autbor.com/guessthenumber/
https://autbor.com/guessthenumber/

Flow Control 51

int(), which translates the string into an integer value. This gets stored in a
variable named guess.

 if guess < secretNumber:
 print('Your guess is too low.')
 elif guess > secretNumber:
 print('Your guess is too high.')

These few lines of code check to see whether the guess is less than or
greater than the secret number. In either case, a hint is printed to the screen.

 else:
 break # This condition is the correct guess!

If the guess is neither higher nor lower than the secret number, then it
must be equal to the secret number—in which case, you want the program
execution to break out of the for loop.

if guess == secretNumber:
 print('Good job! You guessed my number in ' + str(guessesTaken) + ' guesses!')
else:
 print('Nope. The number I was thinking of was ' + str(secretNumber))

After the for loop, the previous if...else statement checks whether the
player has correctly guessed the number and then prints an appropriate
message to the screen. In both cases, the program displays a variable that
contains an integer value (guessesTaken and secretNumber). Since it must con-
catenate these integer values to strings, it passes these variables to the str()
function, which returns the string value form of these integers. Now these
strings can be concatenated with the + operators before finally being passed
to the print() function call.

A Short Program: Rock, Paper, Scissors
Let’s use the programming concepts we’ve learned so far to create a simple
rock, paper, scissors game. The output will look like this:

ROCK, PAPER, SCISSORS
0 Wins, 0 Losses, 0 Ties
Enter your move: (r)ock (p)aper (s)cissors or (q)uit
p
PAPER versus...
PAPER
It is a tie!
0 Wins, 1 Losses, 1 Ties
Enter your move: (r)ock (p)aper (s)cissors or (q)uit
s
SCISSORS versus...
PAPER
You win!

52 Chapter 2

1 Wins, 1 Losses, 1 Ties
Enter your move: (r)ock (p)aper (s)cissors or (q)uit
q

Type the following source code into the file editor, and save the file as
rpsGame.py:

import random, sys

print('ROCK, PAPER, SCISSORS')

These variables keep track of the number of wins, losses, and ties.
wins = 0
losses = 0
ties = 0

while True: # The main game loop.
 print('%s Wins, %s Losses, %s Ties' % (wins, losses, ties))
 while True: # The player input loop.
 print('Enter your move: (r)ock (p)aper (s)cissors or (q)uit')
 playerMove = input()
 if playerMove == 'q':
 sys.exit() # Quit the program.
 if playerMove == 'r' or playerMove == 'p' or playerMove == 's':
 break # Break out of the player input loop.
 print('Type one of r, p, s, or q.')

 # Display what the player chose:
 if playerMove == 'r':
 print('ROCK versus...')
 elif playerMove == 'p':
 print('PAPER versus...')
 elif playerMove == 's':
 print('SCISSORS versus...')

 # Display what the computer chose:
 randomNumber = random.randint(1, 3)
 if randomNumber == 1:
 computerMove = 'r'
 print('ROCK')
 elif randomNumber == 2:
 computerMove = 'p'
 print('PAPER')
 elif randomNumber == 3:
 computerMove = 's'
 print('SCISSORS')

 # Display and record the win/loss/tie:
 if playerMove == computerMove:
 print('It is a tie!')
 ties = ties + 1
 elif playerMove == 'r' and computerMove == 's':
 print('You win!')
 wins = wins + 1

Flow Control 53

 elif playerMove == 'p' and computerMove == 'r':
 print('You win!')
 wins = wins + 1
 elif playerMove == 's' and computerMove == 'p':
 print('You win!')
 wins = wins + 1
 elif playerMove == 'r' and computerMove == 'p':
 print('You lose!')
 losses = losses + 1
 elif playerMove == 'p' and computerMove == 's':
 print('You lose!')
 losses = losses + 1
 elif playerMove == 's' and computerMove == 'r':
 print('You lose!')
 losses = losses + 1

Let’s look at this code line by line, starting at the top.

import random, sys

print('ROCK, PAPER, SCISSORS')

These variables keep track of the number of wins, losses, and ties.
wins = 0
losses = 0
ties = 0

First, we import the random and sys module so that our program can call
the random.randint() and sys.exit() functions. We also set up three variables
to keep track of how many wins, losses, and ties the player has had.

while True: # The main game loop.
 print('%s Wins, %s Losses, %s Ties' % (wins, losses, ties))
 while True: # The player input loop.
 print('Enter your move: (r)ock (p)aper (s)cissors or (q)uit')
 playerMove = input()
 if playerMove == 'q':
 sys.exit() # Quit the program.
 if playerMove == 'r' or playerMove == 'p' or playerMove == 's':
 break # Break out of the player input loop.
 print('Type one of r, p, s, or q.')

This program uses a while loop inside of another while loop. The first
loop is the main game loop, and a single game of rock, paper, scissors is
player on each iteration through this loop. The second loop asks for input
from the player, and keeps looping until the player has entered an r, p,
s, or q for their move. The r, p, and s correspond to rock, paper, and scis-
sors, respectively, while the q means the player intends to quit. In that case,
sys.exit() is called and the program exits. If the player has entered r, p, or
s, the execution breaks out of the loop. Otherwise, the program reminds
the player to enter r, p, s, or q and goes back to the start of the loop.

54 Chapter 2

 # Display what the player chose:
 if playerMove == 'r':
 print('ROCK versus...')
 elif playerMove == 'p':
 print('PAPER versus...')
 elif playerMove == 's':
 print('SCISSORS versus...')

The player’s move is displayed on the screen.

 # Display what the computer chose:
 randomNumber = random.randint(1, 3)
 if randomNumber == 1:
 computerMove = 'r'
 print('ROCK')
 elif randomNumber == 2:
 computerMove = 'p'
 print('PAPER')
 elif randomNumber == 3:
 computerMove = 's'
 print('SCISSORS')

Next, the computer’s move is randomly selected. Since random.randint()
can only return a random number, the 1, 2, or 3 integer value it returns is
stored in a variable named randomNumber. The program stores a 'r', 'p', or 's'
string in computerMove based on the integer in randomNumber, as well as displays
the computer’s move.

 # Display and record the win/loss/tie:
 if playerMove == computerMove:
 print('It is a tie!')
 ties = ties + 1
 elif playerMove == 'r' and computerMove == 's':
 print('You win!')
 wins = wins + 1
 elif playerMove == 'p' and computerMove == 'r':
 print('You win!')
 wins = wins + 1
 elif playerMove == 's' and computerMove == 'p':
 print('You win!')
 wins = wins + 1
 elif playerMove == 'r' and computerMove == 'p':
 print('You lose!')
 losses = losses + 1
 elif playerMove == 'p' and computerMove == 's':
 print('You lose!')
 losses = losses + 1
 elif playerMove == 's' and computerMove == 'r':
 print('You lose!')
 losses = losses + 1

Flow Control 55

Finally, the program compares the strings in playerMove and computerMove,
and displays the results on the screen. It also increments the wins, losses, or
ties variable appropriately. Once the execution reaches the end, it jumps
back to the start of the main program loop to begin another game.

Summary
By using expressions that evaluate to True or False (also called conditions),
you can write programs that make decisions on what code to execute and
what code to skip. You can also execute code over and over again in a loop
while a certain condition evaluates to True. The break and continue state-
ments are useful if you need to exit a loop or jump back to the loop’s start.

These flow control statements will let you write more intelligent pro-
grams. You can also use another type of flow control by writing your own
functions, which is the topic of the next chapter.

Practice Questions

1.	 What are the two values of the Boolean data type? How do you
write them?

2.	 What are the three Boolean operators?

3.	 Write out the truth tables of each Boolean operator (that is, every
possible combination of Boolean values for the operator and what
they evaluate to).

4.	 What do the following expressions evaluate to?

(5 > 4) and (3 == 5)
not (5 > 4)
(5 > 4) or (3 == 5)
not ((5 > 4) or (3 == 5))
(True and True) and (True == False)
(not False) or (not True)

5.	 What are the six comparison operators?

6.	 What is the difference between the equal to operator and the assign-
ment operator?

7.	 Explain what a condition is and where you would use one.

8.	 Identify the three blocks in this code:

spam = 0
if spam == 10:
 print('eggs')
 if spam > 5:
 print('bacon')

56 Chapter 2

 else:
 print('ham')
 print('spam')
print('spam')

9.	 Write code that prints Hello if 1 is stored in spam, prints Howdy if 2 is
stored in spam, and prints Greetings! if anything else is stored in spam.

10.	 What keys can you press if your program is stuck in an infinite loop?

11.	 What is the difference between break and continue?

12.	 What is the difference between range(10), range(0, 10), and range(0, 10, 1)
in a for loop?

13.	 Write a short program that prints the numbers 1 to 10 using a for loop.
Then write an equivalent program that prints the numbers 1 to 10 using
a while loop.

14.	 If you had a function named bacon() inside a module named spam, how
would you call it after importing spam?

Extra credit: Look up the round() and abs() functions on the internet,
and find out what they do. Experiment with them in the interactive shell.

3
F U N C T I O N S

You’re already familiar with the print(),
input(), and len() functions from the previ-

ous chapters. Python provides several built-
in functions like these, but you can also write

your own functions. A function is like a miniprogram
within a program.

To better understand how functions work, let’s create one. Enter this
program into the file editor and save it as helloFunc.py:

 def hello():
  print('Howdy!')

 print('Howdy!!!')
 print('Hello there.')

 hello()
hello()
hello()

58 Chapter 3

You can view the execution of this program at https://autbor.com​
/hellofunc/. The first line is a def statement , which defines a function
named hello(). The code in the block that follows the def statement  is
the body of the function. This code is executed when the function is called,
not when the function is first defined.

The hello() lines after the function  are function calls. In code, a
function call is just the function’s name followed by parentheses, possibly
with some number of arguments in between the parentheses. When the
program execution reaches these calls, it will jump to the top line in the
function and begin executing the code there. When it reaches the end of
the function, the execution returns to the line that called the function
and continues moving through the code as before.

Since this program calls hello() three times, the code in the hello()
function is executed three times. When you run this program, the output
looks like this:

Howdy!
Howdy!!!
Hello there.
Howdy!
Howdy!!!
Hello there.
Howdy!
Howdy!!!
Hello there.

A major purpose of functions is to group code that gets executed mul-
tiple times. Without a function defined, you would have to copy and paste
this code each time, and the program would look like this:

print('Howdy!')
print('Howdy!!!')
print('Hello there.')
print('Howdy!')
print('Howdy!!!')
print('Hello there.')
print('Howdy!')
print('Howdy!!!')
print('Hello there.')

In general, you always want to avoid duplicating code because if you
ever decide to update the code—if, for example, you find a bug you need to
fix—you’ll have to remember to change the code everywhere you copied it.

As you get more programming experience, you’ll often find yourself
deduplicating code, which means getting rid of duplicated or copy-and-
pasted code. Deduplication makes your programs shorter, easier to read,
and easier to update.

https://autbor.com/hellofunc/
https://autbor.com/hellofunc/

Functions 59

def Statements with Parameters
When you call the print() or len() function, you pass them values, called
arguments, by typing them between the parentheses. You can also define
your own functions that accept arguments. Type this example into the file
editor and save it as helloFunc2.py:

 def hello(name):
  print('Hello, ' + name)

 hello('Alice')
hello('Bob')

When you run this program, the output looks like this:

Hello, Alice
Hello, Bob

You can view the execution of this program at https://autbor.com​
/hellofunc2/. The definition of the hello() function in this program has a
parameter called name . Parameters are variables that contain arguments.
When a function is called with arguments, the arguments are stored in the
parameters. The first time the hello() function is called, it is passed the
argument 'Alice' . The program execution enters the function, and the
parameter name is automatically set to 'Alice', which is what gets printed by
the print() statement .

One special thing to note about parameters is that the value stored
in a parameter is forgotten when the function returns. For example, if
you added print(name) after hello('Bob') in the previous program, the pro-
gram would give you a NameError because there is no variable named name.
This variable is destroyed after the function call hello('Bob') returns, so
print(name) would refer to a name variable that does not exist.

This is similar to how a program’s variables are forgotten when the pro-
gram terminates. I’ll talk more about why that happens later in the chapter,
when I discuss what a function’s local scope is.

Define, Call, Pass, Argument, Parameter
The terms define, call, pass, argument, and parameter can be confusing. Let’s
look at a code example to review these terms:

u def sayHello(name):
 print('Hello, ' + name)

v sayHello('Al')

To define a function is to create it, just like an assignment statement like
spam = 42 creates the spam variable. The def statement defines the sayHello()
function . The sayHello('Al') line  calls the now-created function, send-
ing the execution to the top of the function’s code. This function call is
also known as passing the string value 'Al' to the function. A value being

https://autbor.com/hellofunc2/
https://autbor.com/hellofunc2/

60 Chapter 3

passed to a function in a function call is an argument. The argument 'Al'
is assigned to a local variable named name. Variables that have arguments
assigned to them are parameters.

It’s easy to mix up these terms, but keeping them straight will ensure
that you know precisely what the text in this chapter means.

Return Values and return Statements
When you call the len() function and pass it an argument such as 'Hello',
the function call evaluates to the integer value 5, which is the length of the
string you passed it. In general, the value that a function call evaluates to is
called the return value of the function.

When creating a function using the def statement, you can specify what
the return value should be with a return statement. A return statement con-
sists of the following:

•	 The return keyword

•	 The value or expression that the function should return

When an expression is used with a return statement, the return value
is what this expression evaluates to. For example, the following program
defines a function that returns a different string depending on what num-
ber it is passed as an argument. Enter this code into the file editor and save
it as magic8Ball.py:

 import random

 def getAnswer(answerNumber):
  if answerNumber == 1:

 return 'It is certain'
 elif answerNumber == 2:
 return 'It is decidedly so'
 elif answerNumber == 3:
 return 'Yes'
 elif answerNumber == 4:
 return 'Reply hazy try again'
 elif answerNumber == 5:
 return 'Ask again later'
 elif answerNumber == 6:
 return 'Concentrate and ask again'
 elif answerNumber == 7:
 return 'My reply is no'
 elif answerNumber == 8:
 return 'Outlook not so good'
 elif answerNumber == 9:
 return 'Very doubtful'

 r = random.randint(1, 9)
 fortune = getAnswer(r)
 print(fortune)

Functions 61

You can view the execution of this program at https://autbor.com​
/magic8ball/. When this program starts, Python first imports the random
module . Then the getAnswer() function is defined . Because the func-
tion is being defined (and not called), the execution skips over the code in
it. Next, the random.randint() function is called with two arguments: 1 and
9 . It evaluates to a random integer between 1 and 9 (including 1 and 9
themselves), and this value is stored in a variable named r.

The getAnswer() function is called with r as the argument . The pro-
gram execution moves to the top of the getAnswer() function , and the
value r is stored in a parameter named answerNumber. Then, depending on
the value in answerNumber, the function returns one of many possible string
values. The program execution returns to the line at the bottom of the pro-
gram that originally called getAnswer() . The returned string is assigned to
a variable named fortune, which then gets passed to a print() call  and is
printed to the screen.

Note that since you can pass return values as an argument to another
function call, you could shorten these three lines:

r = random.randint(1, 9)
fortune = getAnswer(r)
print(fortune)

to this single equivalent line:

print(getAnswer(random.randint(1, 9)))

Remember, expressions are composed of values and operators. A func-
tion call can be used in an expression because the call evaluates to its
return value.

The None Value
In Python, there is a value called None, which represents the absence of a
value. The None value is the only value of the NoneType data type. (Other pro-
gramming languages might call this value null, nil, or undefined.) Just like
the Boolean True and False values, None must be typed with a capital N.

This value-without-a-value can be helpful when you need to store
something that won’t be confused for a real value in a variable. One place
where None is used is as the return value of print(). The print() function
displays text on the screen, but it doesn’t need to return anything in the
same way len() or input() does. But since all function calls need to evalu-
ate to a return value, print() returns None. To see this in action, enter the
following into the interactive shell:

>>> spam = print('Hello!')
Hello!
>>> None == spam
True

https://autbor.com/magic8ball/
https://autbor.com/magic8ball/

62 Chapter 3

Behind the scenes, Python adds return None to the end of any function
definition with no return statement. This is similar to how a while or for
loop implicitly ends with a continue statement. Also, if you use a return state-
ment without a value (that is, just the return keyword by itself), then None
is returned.

Keyword Arguments and the print() Function
Most arguments are identified by their position in the function call. For
example, random.randint(1, 10) is different from random.randint(10, 1). The
function call random.randint(1, 10) will return a random integer between 1
and 10 because the first argument is the low end of the range and the sec-
ond argument is the high end (while random.randint(10, 1) causes an error).

However, rather than through their position, keyword arguments are
identified by the keyword put before them in the function call. Keyword
arguments are often used for optional parameters. For example, the print()
function has the optional parameters end and sep to specify what should be
printed at the end of its arguments and between its arguments (separating
them), respectively.

If you ran a program with the following code:

print('Hello')
print('World')

the output would look like this:

Hello
World

The two outputted strings appear on separate lines because the print()
function automatically adds a newline character to the end of the string it is
passed. However, you can set the end keyword argument to change the new-
line character to a different string. For example, if the code were this:

print('Hello', end='')
print('World')

the output would look like this:

HelloWorld

The output is printed on a single line because there is no longer a
newline printed after 'Hello'. Instead, the blank string is printed. This is
useful if you need to disable the newline that gets added to the end of every
print() function call.

Functions 63

Similarly, when you pass multiple string values to print(), the function
will automatically separate them with a single space. Enter the following
into the interactive shell:

>>> print('cats', 'dogs', 'mice')
cats dogs mice

But you could replace the default separating string by passing the sep
keyword argument a different string. Enter the following into the interac-
tive shell:

>>> print('cats', 'dogs', 'mice', sep=',')
cats,dogs,mice

You can add keyword arguments to the functions you write as well, but
first you’ll have to learn about the list and dictionary data types in the next
two chapters. For now, just know that some functions have optional keyword
arguments that can be specified when the function is called.

The Call Stack
Imagine that you have a meandering conversation with someone. You talk
about your friend Alice, which then reminds you of a story about your
coworker Bob, but first you have to explain something about your cousin
Carol. You finish you story about Carol and go back to talking about Bob,
and when you finish your story about Bob, you go back to talking about
Alice. But then you are reminded about your brother David, so you tell a
story about him, and then get back to finishing your original story about
Alice. Your conversation followed a stack-like structure, like in Figure 3-1.
The conversation is stack-like because the current topic is always at the top
of the stack.

Alice Alice Alice Alice Alice Alice Alice

Bob

Carol

DavidBob Bob

Figure 3-1: Your meandering conversation stack

Similar to our meandering conversation, calling a function doesn’t
send the execution on a one-way trip to the top of a function. Python will
remember which line of code called the function so that the execution can
return there when it encounters a return statement. If that original function
called other functions, the execution would return to those function calls
first, before returning from the original function call.

64 Chapter 3

Open a file editor window and enter the following code, saving it as
abcdCallStack.py:

def a():
 print('a() starts')

  b()
  d()

 print('a() returns')

def b():
 print('b() starts')

  c()
 print('b() returns')

def c():
  print('c() starts')

 print('c() returns')

def d():
 print('d() starts')
 print('d() returns')

y a()

If you run this program, the output will look like this:

a() starts
b() starts
c() starts
c() returns
b() returns
d() starts
d() returns
a() returns

You can view the execution of this program at https://autbor.com​
/abcdcallstack/. When a() is called , it calls b() , which in turn calls c() .
The c() function doesn’t call anything; it just displays c() starts  and c()
returns before returning to the line in b() that called it . Once execution
returns to the code in b() that called c(), it returns to the line in a() that
called b() . The execution continues to the next line in the b() function ,
which is a call to d(). Like the c() function, the d() function also doesn’t call
anything. It just displays d() starts and d() returns before returning to the
line in b() that called it. Since b() contains no other code, the execution
returns to the line in a() that called b() . The last line in a() displays a()
returns before returning to the original a() call at the end of the program .

The call stack is how Python remembers where to return the execution
after each function call. The call stack isn’t stored in a variable in your pro-
gram; rather, Python handles it behind the scenes. When your program calls
a function, Python creates a frame object on the top of the call stack. Frame

https://autbor.com/abcdcallstack/
https://autbor.com/abcdcallstack/

Functions 65

objects store the line number of the original function call so that Python can
remember where to return. If another function call is made, Python puts
another frame object on the call stack above the other one.

When a function call returns, Python removes a frame object from the
top of the stack and moves the execution to the line number stored in it.
Note that frame objects are always added and removed from the top of the
stack and not from any other place. Figure 3-2 illustrates the state of the
call stack in abcdCallStack.py as each function is called and returns.

a()

b()

c()

d()

a() a() a() a() a() a()

b() b()

Figure 3-2: The frame objects of the call stack as abcdCallStack.py calls and returns
from functions

The top of the call stack is which function the execution is currently
in. When the call stack is empty, the execution is on a line outside of all
functions.

The call stack is a technical detail that you don’t strictly need to know
about to write programs. It’s enough to understand that function calls
return to the line number they were called from. However, understanding
call stacks makes it easier to understand local and global scopes, described
in the next section.

Local and Global Scope
Parameters and variables that are assigned in a called function are said
to exist in that function’s local scope. Variables that are assigned outside all
functions are said to exist in the global scope. A variable that exists in a local
scope is called a local variable, while a variable that exists in the global scope
is called a global variable. A variable must be one or the other; it cannot be
both local and global.

Think of a scope as a container for variables. When a scope is destroyed,
all the values stored in the scope’s variables are forgotten. There is only
one global scope, and it is created when your program begins. When your
program terminates, the global scope is destroyed, and all its variables are
forgotten. Otherwise, the next time you ran a program, the variables would
remember their values from the last time you ran it.

A local scope is created whenever a function is called. Any variables
assigned in the function exist within the function’s local scope. When
the function returns, the local scope is destroyed, and these variables are
forgotten. The next time you call the function, the local variables will not
remember the values stored in them from the last time the function was
called. Local variables are also stored in frame objects on the call stack.

66 Chapter 3

Scopes matter for several reasons:

•	 Code in the global scope, outside of all functions, cannot use any
local variables.

•	 However, code in a local scope can access global variables.

•	 Code in a function’s local scope cannot use variables in any other
local scope.

•	 You can use the same name for different variables if they are in dif-
ferent scopes. That is, there can be a local variable named spam and
a global variable also named spam.

The reason Python has different scopes instead of just making every-
thing a global variable is so that when variables are modified by the code
in a particular call to a function, the function interacts with the rest of the
program only through its parameters and the return value. This narrows
down the number of lines of code that may be causing a bug. If your pro-
gram contained nothing but global variables and had a bug because of a
variable being set to a bad value, then it would be hard to track down where
this bad value was set. It could have been set from anywhere in the pro-
gram, and your program could be hundreds or thousands of lines long! But
if the bug is caused by a local variable with a bad value, you know that only
the code in that one function could have set it incorrectly.

While using global variables in small programs is fine, it is a bad habit
to rely on global variables as your programs get larger and larger.

Local Variables Cannot Be Used in the Global Scope
Consider this program, which will cause an error when you run it:

def spam():
  eggs = 31337

spam()
print(eggs)

If you run this program, the output will look like this:

Traceback (most recent call last):
 File "C:/test1.py", line 4, in <module>
 print(eggs)
NameError: name 'eggs' is not defined

The error happens because the eggs variable exists only in the local
scope created when spam() is called . Once the program execution returns
from spam, that local scope is destroyed, and there is no longer a variable
named eggs. So when your program tries to run print(eggs), Python gives
you an error saying that eggs is not defined. This makes sense if you think
about it; when the program execution is in the global scope, no local scopes
exist, so there can’t be any local variables. This is why only global variables
can be used in the global scope.

Functions 67

Local Scopes Cannot Use Variables in Other Local Scopes
A new local scope is created whenever a function is called, including when a
function is called from another function. Consider this program:

def spam():
  eggs = 99
  bacon()
  print(eggs)

def bacon():
 ham = 101

  eggs = 0

 spam()

You can view the execution of this program at https://autbor.com​
/otherlocalscopes/. When the program starts, the spam() function is called ,
and a local scope is created. The local variable eggs  is set to 99. Then the
bacon() function is called , and a second local scope is created. Multiple
local scopes can exist at the same time. In this new local scope, the local
variable ham is set to 101, and a local variable eggs—which is different from
the one in spam()’s local scope—is also created  and set to 0.

When bacon() returns, the local scope for that call is destroyed, includ-
ing its eggs variable. The program execution continues in the spam() func-
tion to print the value of eggs . Since the local scope for the call to spam()
still exists, the only eggs variable is the spam() function’s eggs variable, which
was set to 99. This is what the program prints.

The upshot is that local variables in one function are completely sepa-
rate from the local variables in another function.

Global Variables Can Be Read from a Local Scope
Consider the following program:

def spam():
 print(eggs)
eggs = 42
spam()
print(eggs)

You can view the execution of this program at https://autbor.com​
/readglobal/. Since there is no parameter named eggs or any code that
assigns eggs a value in the spam() function, when eggs is used in spam(),
Python considers it a reference to the global variable eggs. This is why
42 is printed when the previous program is run.

https://autbor.com/otherlocalscopes/
https://autbor.com/otherlocalscopes/
https://autbor.com/readglobal/
https://autbor.com/readglobal/

68 Chapter 3

Local and Global Variables with the Same Name
Technically, it’s perfectly acceptable to use the same variable name for a
global variable and local variables in different scopes in Python. But, to
simplify your life, avoid doing this. To see what happens, enter the follow-
ing code into the file editor and save it as localGlobalSameName.py:

def spam():
  eggs = 'spam local'

 print(eggs) # prints 'spam local'

def bacon():
  eggs = 'bacon local'

 print(eggs) # prints 'bacon local'
 spam()
 print(eggs) # prints 'bacon local'

 eggs = 'global'
bacon()
print(eggs) # prints 'global'

When you run this program, it outputs the following:

bacon local
spam local
bacon local
global

You can view the execution of this program at https://autbor.com​
/localglobalsamename/. There are actually three different variables in this
program, but confusingly they are all named eggs. The variables are as
follows:

u	 A variable named eggs that exists in a local scope when spam() is called.
v	 A variable named eggs that exists in a local scope when bacon() is called.
w	 A variable named eggs that exists in the global scope.

Since these three separate variables all have the same name, it can be
confusing to keep track of which one is being used at any given time. This is
why you should avoid using the same variable name in different scopes.

The global Statement
If you need to modify a global variable from within a function, use the
global statement. If you have a line such as global eggs at the top of a func-
tion, it tells Python, “In this function, eggs refers to the global variable, so
don’t create a local variable with this name.” For example, enter the follow-
ing code into the file editor and save it as globalStatement.py:

def spam():
  global eggs
  eggs = 'spam'

https://autbor.com/localglobalsamename/
https://autbor.com/localglobalsamename/

Functions 69

eggs = 'global'
spam()
print(eggs)

When you run this program, the final print() call will output this:

spam

You can view the execution of this program at https://autbor.com​
/globalstatement/. Because eggs is declared global at the top of spam() ,
when eggs is set to 'spam' , this assignment is done to the globally scoped
eggs. No local eggs variable is created.

There are four rules to tell whether a variable is in a local scope or
global scope:

•	 If a variable is being used in the global scope (that is, outside of all
functions), then it is always a global variable.

•	 If there is a global statement for that variable in a function, it is a
global variable.

•	 Otherwise, if the variable is used in an assignment statement in the
function, it is a local variable.

•	 But if the variable is not used in an assignment statement, it is a
global variable.

To get a better feel for these rules, here’s an example program. Enter
the following code into the file editor and save it as sameNameLocalGlobal.py:

def spam():
  global eggs

 eggs = 'spam' # this is the global

def bacon():
  eggs = 'bacon' # this is a local

def ham():
  print(eggs) # this is the global

eggs = 42 # this is the global
spam()
print(eggs)

In the spam() function, eggs is the global eggs variable because there’s
a global statement for eggs at the beginning of the function . In bacon(),
eggs is a local variable because there’s an assignment statement for it in
that function . In ham() , eggs is the global variable because there is no
assignment statement or global statement for it in that function. If you run
sameNameLocalGlobal.py, the output will look like this:

spam

https://autbor.com/globalstatement/
https://autbor.com/globalstatement/

70 Chapter 3

You can view the execution of this program at https://autbor.com​
/sameNameLocalGlobal/. In a function, a variable will either always be global
or always be local. The code in a function can’t use a local variable named
eggs and then use the global eggs variable later in that same function.

N O T E 	 If you ever want to modify the value stored in a global variable from in a function,
you must use a global statement on that variable.

If you try to use a local variable in a function before you assign a value
to it, as in the following program, Python will give you an error. To see this,
enter the following into the file editor and save it as sameNameError.py:

def spam():
 print(eggs) # ERROR!

  eggs = 'spam local'

 eggs = 'global'
spam()

If you run the previous program, it produces an error message.

Traceback (most recent call last):
 File "C:/sameNameError.py", line 6, in <module>
 spam()
 File "C:/sameNameError.py", line 2, in spam
 print(eggs) # ERROR!
UnboundLocalError: local variable 'eggs' referenced before assignment

You can view the execution of this program at https://autbor.com​
/sameNameError/. This error happens because Python sees that there is
an assignment statement for eggs in the spam() function  and, therefore,
considers eggs to be local. But because print(eggs) is executed before eggs is
assigned anything, the local variable eggs doesn’t exist. Python will not fall
back to using the global eggs variable .

F UNC T IONS A S “BL ACK BOX E S”

Often, all you need to know about a function are its inputs (the parameters)
and output value; you don’t always have to burden yourself with how the func-
tion’s code actually works. When you think about functions in this high-level
way, it’s common to say that you’re treating a function as a “black box.”

This idea is fundamental to modern programming. Later chapters in this
book will show you several modules with functions that were written by other
people. While you can take a peek at the source code if you’re curious, you
don’t need to know how these functions work in order to use them. And because
writing functions without global variables is encouraged, you usually don’t have
to worry about the function’s code interacting with the rest of your program.

https://autbor.com/sameNameLocalGlobal
https://autbor.com/sameNameLocalGlobal
https://autbor.com/sameNameError/
https://autbor.com/sameNameError/

Functions 71

Exception Handling
Right now, getting an error, or exception, in your Python program means the
entire program will crash. You don’t want this to happen in real-world pro-
grams. Instead, you want the program to detect errors, handle them, and
then continue to run.

For example, consider the following program, which has a divide-by-
zero error. Open a file editor window and enter the following code, saving
it as zeroDivide.py:

def spam(divideBy):
 return 42 / divideBy

print(spam(2))
print(spam(12))
print(spam(0))
print(spam(1))

We’ve defined a function called spam, given it a parameter, and then
printed the value of that function with various parameters to see what hap-
pens. This is the output you get when you run the previous code:

21.0
3.5
Traceback (most recent call last):
 File "C:/zeroDivide.py", line 6, in <module>
 print(spam(0))
 File "C:/zeroDivide.py", line 2, in spam
 return 42 / divideBy
ZeroDivisionError: division by zero

You can view the execution of this program at https://autbor.com​
/zerodivide/. A ZeroDivisionError happens whenever you try to divide a
number by zero. From the line number given in the error message, you
know that the return statement in spam() is causing an error.

Errors can be handled with try and except statements. The code that
could potentially have an error is put in a try clause. The program execu-
tion moves to the start of a following except clause if an error happens.

You can put the previous divide-by-zero code in a try clause and have an
except clause contain code to handle what happens when this error occurs.

def spam(divideBy):
 try:
 return 42 / divideBy
 except ZeroDivisionError:
 print('Error: Invalid argument.')

print(spam(2))
print(spam(12))
print(spam(0))
print(spam(1))

https://autbor.com/zerodivide/
https://autbor.com/zerodivide/

72 Chapter 3

When code in a try clause causes an error, the program execution
immediately moves to the code in the except clause. After running that
code, the execution continues as normal. The output of the previous pro-
gram is as follows:

21.0
3.5
Error: Invalid argument.
None
42.0

You can view the execution of this program at https://autbor.com
/tryexceptzerodivide/. Note that any errors that occur in function calls in
a try block will also be caught. Consider the following program, which
instead has the spam() calls in the try block:

def spam(divideBy):
 return 42 / divideBy

try:
 print(spam(2))
 print(spam(12))
 print(spam(0))
 print(spam(1))
except ZeroDivisionError:
 print('Error: Invalid argument.')

When this program is run, the output looks like this:

21.0
3.5
Error: Invalid argument.

You can view the execution of this program at https://autbor.com​
/spamintry/. The reason print(spam(1)) is never executed is because once
the execution jumps to the code in the except clause, it does not return
to the try clause. Instead, it just continues moving down the program
as normal.

A Short Program: Zigzag
Let’s use the programming concepts you’ve learned so far to create a small
animation program. This program will create a back-and-forth, zigzag pat-
tern until the user stops it by pressing the Mu editor’s Stop button or by
pressing ctrl-C. When you run this program, the output will look some-
thing like this:

https://autbor.com/tryexceptzerodivide/
https://autbor.com/tryexceptzerodivide/
https://autbor.com/spamintry/
https://autbor.com/spamintry/

Functions 73

Type the following source code into the file editor, and save the file
as zigzag.py:

import time, sys
indent = 0 # How many spaces to indent.
indentIncreasing = True # Whether the indentation is increasing or not.

try:
 while True: # The main program loop.
 print(' ' * indent, end='')
 print('********')
 time.sleep(0.1) # Pause for 1/10 of a second.

 if indentIncreasing:
 # Increase the number of spaces:
 indent = indent + 1
 if indent == 20:
 # Change direction:
 indentIncreasing = False
 else:
 # Decrease the number of spaces:
 indent = indent - 1
 if indent == 0:
 # Change direction:
 indentIncreasing = True
except KeyboardInterrupt:
 sys.exit()

Let’s look at this code line by line, starting at the top.

import time, sys
indent = 0 # How many spaces to indent.
indentIncreasing = True # Whether the indentation is increasing or not.

First, we’ll import the time and sys modules. Our program uses two vari-
ables: the indent variable keeps track of how many spaces of indentation are
before the band of eight asterisks and indentIncreasing contains a Boolean
value to determine if the amount of indentation is increasing or decreasing.

try:
 while True: # The main program loop.
 print(' ' * indent, end='')
 print('********')
 time.sleep(0.1) # Pause for 1/10 of a second.

74 Chapter 3

Next, we place the rest of the program inside a try statement. When the
user presses ctrl-C while a Python program is running, Python raises the
KeyboardInterrupt exception. If there is no try-except statement to catch this
exception, the program crashes with an ugly error message. However, for
our program, we want it to cleanly handle the KeyboardInterrupt exception by
calling sys.exit(). (The code for this is in the except statement at the end of
the program.)

The while True: infinite loop will repeat the instructions in our pro-
gram forever. This involves using ' ' * indent to print the correct amount of
spaces of indentation. We don’t want to automatically print a newline after
these spaces, so we also pass end='' to the first print() call. A second print()
call prints the band of asterisks. The time.sleep() function hasn’t been cov-
ered yet, but suffice it to say that it introduces a one-tenth-second pause in
our program at this point.

 if indentIncreasing:
 # Increase the number of spaces:
 indent = indent + 1
 if indent == 20:
 indentIncreasing = False # Change direction.

Next, we want to adjust the amount of indentation for the next time we
print asterisks. If indentIncreasing is True, then we want to add one to indent.
But once indent reaches 20, we want the indentation to decrease.

 else:
 # Decrease the number of spaces:
 indent = indent - 1
 if indent == 0:
 indentIncreasing = True # Change direction.

Meanwhile, if indentIncreasing was False, we want to subtract one from
indent. Once indent reaches 0, we want the indentation to increase once
again. Either way, the program execution will jump back to the start of the
main program loop to print the asterisks again.

except KeyboardInterrupt:
 sys.exit()

If the user presses ctrl-C at any point that the program execution is
in the try block, the KeyboardInterrrupt exception is raised and handled
by this except statement. The program execution moves inside the except
block, which runs sys.exit() and quits the program. This way, even though
the main program loop is an infinite loop, the user has a way to shut
down the program.

Functions 75

Summary
Functions are the primary way to compartmentalize your code into logical
groups. Since the variables in functions exist in their own local scopes, the
code in one function cannot directly affect the values of variables in other
functions. This limits what code could be changing the values of your vari-
ables, which can be helpful when it comes to debugging your code.

Functions are a great tool to help you organize your code. You can
think of them as black boxes: they have inputs in the form of parameters
and outputs in the form of return values, and the code in them doesn’t
affect variables in other functions.

In previous chapters, a single error could cause your programs to crash.
In this chapter, you learned about try and except statements, which can run
code when an error has been detected. This can make your programs more
resilient to common error cases.

Practice Questions

1.	 Why are functions advantageous to have in your programs?

2.	 When does the code in a function execute: when the function is
defined or when the function is called?

3.	 What statement creates a function?

4.	 What is the difference between a function and a function call?

5.	 How many global scopes are there in a Python program? How many
local scopes?

6.	 What happens to variables in a local scope when the function
call returns?

7.	 What is a return value? Can a return value be part of an expression?

8.	 If a function does not have a return statement, what is the return
value of a call to that function?

9.	 How can you force a variable in a function to refer to the
global variable?

10.	 What is the data type of None?

11.	 What does the import areallyourpetsnamederic statement do?

12.	 If you had a function named bacon() in a module named spam, how
would you call it after importing spam?

13.	 How can you prevent a program from crashing when it gets an error?

14.	 What goes in the try clause? What goes in the except clause?

76 Chapter 3

Practice Projects
For practice, write programs to do the following tasks.

The Collatz Sequence
Write a function named collatz() that has one parameter named number. If
number is even, then collatz() should print number // 2 and return this value.
If number is odd, then collatz() should print and return 3 * number + 1.

Then write a program that lets the user type in an integer and that
keeps calling collatz() on that number until the function returns the value 1.
(Amazingly enough, this sequence actually works for any integer—sooner or
later, using this sequence, you’ll arrive at 1! Even mathematicians aren’t sure
why. Your program is exploring what’s called the Collatz sequence, sometimes
called “the simplest impossible math problem.”)

Remember to convert the return value from input() to an integer with
the int() function; otherwise, it will be a string value.

Hint: An integer number is even if number % 2 == 0, and it’s odd if
number % 2 == 1.

The output of this program could look something like this:

Enter number:
3
10
5
16
8
4
2
1

Input Validation
Add try and except statements to the previous project to detect whether the
user types in a noninteger string. Normally, the int() function will raise a
ValueError error if it is passed a noninteger string, as in int('puppy'). In the
except clause, print a message to the user saying they must enter an integer.

4
L I S T S

One more topic you’ll need to understand
before you can begin writing programs in

earnest is the list data type and its cousin,
the tuple. Lists and tuples can contain multiple

values, which makes writing programs that handle
large amounts of data easier. And since lists them-
selves can contain other lists, you can use them to
arrange data into hierarchical structures.

In this chapter, I’ll discuss the basics of lists. I’ll also teach you about
methods, which are functions that are tied to values of a certain data type.
Then I’ll briefly cover the sequence data types (lists, tuples, and strings)
and show how they compare with each other. In the next chapter, I’ll intro-
duce you to the dictionary data type.

78 Chapter 4

The List Data Type
A list is a value that contains multiple values in an ordered sequence. The
term list value refers to the list itself (which is a value that can be stored in a
variable or passed to a function like any other value), not the values inside
the list value. A list value looks like this: ['cat', 'bat', 'rat', 'elephant'].
Just as string values are typed with quote characters to mark where the
string begins and ends, a list begins with an opening square bracket and
ends with a closing square bracket, []. Values inside the list are also called
items. Items are separated with commas (that is, they are comma-delimited).
For example, enter the following into the interactive shell:

>>> [1, 2, 3]
[1, 2, 3]
>>> ['cat', 'bat', 'rat', 'elephant']
['cat', 'bat', 'rat', 'elephant']
>>> ['hello', 3.1415, True, None, 42]
['hello', 3.1415, True, None, 42]

 >>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam
['cat', 'bat', 'rat', 'elephant']

The spam variable  is still assigned only one value: the list value. But
the list value itself contains other values. The value [] is an empty list that
contains no values, similar to '', the empty string.

Getting Individual Values in a List with Indexes
Say you have the list ['cat', 'bat', 'rat', 'elephant'] stored in a variable
named spam. The Python code spam[0] would evaluate to 'cat', and spam[1]
would evaluate to 'bat', and so on. The integer inside the square brackets
that follows the list is called an index. The first value in the list is at index
0, the second value is at index 1, the third value is at index 2, and so on.
Figure 4-1 shows a list value assigned to spam, along with what the index
expressions would evaluate to. Note that because the first index is 0, the
last index is one less than the size of the list; a list of four items has 3 as
its last index.

spam = ["cat", "bat", "rat", "elephant"]

spam[0] spam[1] spam[2] spam[3]

Figure 4-1: A list value stored in the variable spam,
showing which value each index refers to

For example, enter the following expressions into the interactive shell.
Start by assigning a list to the variable spam.

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[0]
'cat'

Lists 79

>>> spam[1]
'bat'
>>> spam[2]
'rat'
>>> spam[3]
'elephant'
>>> ['cat', 'bat', 'rat', 'elephant'][3]
'elephant'

 >>> 'Hello, ' + spam[0]
 'Hello, cat'

>>> 'The ' + spam[1] + ' ate the ' + spam[0] + '.'
'The bat ate the cat.'

Notice that the expression 'Hello, ' + spam[0]  evaluates to 'Hello, ' +
'cat' because spam[0] evaluates to the string 'cat'. This expression in turn
evaluates to the string value 'Hello, cat' .

Python will give you an IndexError error message if you use an index
that exceeds the number of values in your list value.

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[10000]
Traceback (most recent call last):
 File "<pyshell#9>", line 1, in <module>
 spam[10000]
IndexError: list index out of range

Indexes can be only integer values, not floats. The following example
will cause a TypeError error:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[1]
'bat'
>>> spam[1.0]
Traceback (most recent call last):
 File "<pyshell#13>", line 1, in <module>
 spam[1.0]
TypeError: list indices must be integers or slices, not float
>>> spam[int(1.0)]
'bat'

Lists can also contain other list values. The values in these lists of lists
can be accessed using multiple indexes, like so:

>>> spam = [['cat', 'bat'], [10, 20, 30, 40, 50]]
>>> spam[0]
['cat', 'bat']
>>> spam[0][1]
'bat'
>>> spam[1][4]
50

80 Chapter 4

The first index dictates which list value to use, and the second indicates
the value within the list value. For example, spam[0][1] prints 'bat', the sec-
ond value in the first list. If you only use one index, the program will print
the full list value at that index.

Negative Indexes
While indexes start at 0 and go up, you can also use negative integers for
the index. The integer value -1 refers to the last index in a list, the value -2
refers to the second-to-last index in a list, and so on. Enter the following
into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[-1]
'elephant'
>>> spam[-3]
'bat'
>>> 'The ' + spam[-1] + ' is afraid of the ' + spam[-3] + '.'
'The elephant is afraid of the bat.'

Getting a List from Another List with Slices
Just as an index can get a single value from a list, a slice can get several
values from a list, in the form of a new list. A slice is typed between square
brackets, like an index, but it has two integers separated by a colon. Notice
the difference between indexes and slices.

•	 spam[2] is a list with an index (one integer).

•	 spam[1:4] is a list with a slice (two integers).

In a slice, the first integer is the index where the slice starts. The sec-
ond integer is the index where the slice ends. A slice goes up to, but will
not include, the value at the second index. A slice evaluates to a new list
value. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[0:4]
['cat', 'bat', 'rat', 'elephant']
>>> spam[1:3]
['bat', 'rat']
>>> spam[0:-1]
['cat', 'bat', 'rat']

As a shortcut, you can leave out one or both of the indexes on either
side of the colon in the slice. Leaving out the first index is the same as using
0, or the beginning of the list. Leaving out the second index is the same as
using the length of the list, which will slice to the end of the list. Enter the
following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[:2]

Lists 81

['cat', 'bat']
>>> spam[1:]
['bat', 'rat', 'elephant']
>>> spam[:]
['cat', 'bat', 'rat', 'elephant']

Getting a List’s Length with the len() Function
The len() function will return the number of values that are in a list value
passed to it, just like it can count the number of characters in a string value.
Enter the following into the interactive shell:

>>> spam = ['cat', 'dog', 'moose']
>>> len(spam)
3

Changing Values in a List with Indexes
Normally, a variable name goes on the left side of an assignment statement,
like spam = 42. However, you can also use an index of a list to change the value
at that index. For example, spam[1] = 'aardvark' means “Assign the value at
index 1 in the list spam to the string 'aardvark'.” Enter the following into the
interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[1] = 'aardvark'
>>> spam
['cat', 'aardvark', 'rat', 'elephant']
>>> spam[2] = spam[1]
>>> spam
['cat', 'aardvark', 'aardvark', 'elephant']
>>> spam[-1] = 12345
>>> spam
['cat', 'aardvark', 'aardvark', 12345]

List Concatenation and List Replication
Lists can be concatenated and replicated just like strings. The + operator
combines two lists to create a new list value and the * operator can be used
with a list and an integer value to replicate the list. Enter the following into
the interactive shell:

>>> [1, 2, 3] + ['A', 'B', 'C']
[1, 2, 3, 'A', 'B', 'C']
>>> ['X', 'Y', 'Z'] * 3
['X', 'Y', 'Z', 'X', 'Y', 'Z', 'X', 'Y', 'Z']
>>> spam = [1, 2, 3]
>>> spam = spam + ['A', 'B', 'C']
>>> spam
[1, 2, 3, 'A', 'B', 'C']

82 Chapter 4

Removing Values from Lists with del Statements
The del statement will delete values at an index in a list. All of the values
in the list after the deleted value will be moved up one index. For example,
enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> del spam[2]
>>> spam
['cat', 'bat', 'elephant']
>>> del spam[2]
>>> spam
['cat', 'bat']

The del statement can also be used on a simple variable to delete it, as
if it were an “unassignment” statement. If you try to use the variable after
deleting it, you will get a NameError error because the variable no longer
exists. In practice, you almost never need to delete simple variables. The
del statement is mostly used to delete values from lists.

Working with Lists
When you first begin writing programs, it’s tempting to create many indi-
vidual variables to store a group of similar values. For example, if I wanted
to store the names of my cats, I might be tempted to write code like this:

catName1 = 'Zophie'
catName2 = 'Pooka'
catName3 = 'Simon'
catName4 = 'Lady Macbeth'
catName5 = 'Fat-tail'
catName6 = 'Miss Cleo'

It turns out that this is a bad way to write code. (Also, I don’t actually
own this many cats, I swear.) For one thing, if the number of cats changes,
your program will never be able to store more cats than you have variables.
These types of programs also have a lot of duplicate or nearly identical code
in them. Consider how much duplicate code is in the following program,
which you should enter into the file editor and save as allMyCats1.py:

print('Enter the name of cat 1:')
catName1 = input()
print('Enter the name of cat 2:')
catName2 = input()
print('Enter the name of cat 3:')
catName3 = input()
print('Enter the name of cat 4:')
catName4 = input()
print('Enter the name of cat 5:')
catName5 = input()
print('Enter the name of cat 6:')

Lists 83

catName6 = input()
print('The cat names are:')
print(catName1 + ' ' + catName2 + ' ' + catName3 + ' ' + catName4 + ' ' +
catName5 + ' ' + catName6)

Instead of using multiple, repetitive variables, you can use a single
variable that contains a list value. For example, here’s a new and improved
version of the allMyCats1.py program. This new version uses a single list and
can store any number of cats that the user types in. In a new file editor win-
dow, enter the following source code and save it as allMyCats2.py:

catNames = []
while True:
 print('Enter the name of cat ' + str(len(catNames) + 1) +
 ' (Or enter nothing to stop.):')
 name = input()
 if name == '':
 break
 catNames = catNames + [name] # list concatenation
print('The cat names are:')
for name in catNames:
 print(' ' + name)

When you run this program, the output will look something like this:

Enter the name of cat 1 (Or enter nothing to stop.):
Zophie
Enter the name of cat 2 (Or enter nothing to stop.):
Pooka
Enter the name of cat 3 (Or enter nothing to stop.):
Simon
Enter the name of cat 4 (Or enter nothing to stop.):
Lady Macbeth
Enter the name of cat 5 (Or enter nothing to stop.):
Fat-tail
Enter the name of cat 6 (Or enter nothing to stop.):
Miss Cleo
Enter the name of cat 7 (Or enter nothing to stop.):

The cat names are:
 Zophie
 Pooka
 Simon
 Lady Macbeth
 Fat-tail
 Miss Cleo

You can view the execution of these programs at https://autbor.com​
/allmycats1/ and https://autbor.com/allmycats2/. The benefit of using a list is
that your data is now in a structure, so your program is much more flexible
in processing the data than it would be with several repetitive variables.

https://autbor.com/allmycats1/
https://autbor.com/allmycats1/

84 Chapter 4

Using for Loops with Lists
In Chapter 2, you learned about using for loops to execute a block of code
a certain number of times. Technically, a for loop repeats the code block
once for each item in a list value. For example, if you ran this code:

for i in range(4):
 print(i)

the output of this program would be as follows:

0
1
2
3

This is because the return value from range(4) is a sequence value
that Python considers similar to [0, 1, 2, 3]. (Sequences are described
in “Sequence Data Types” on page 93.) The following program has the
same output as the previous one:

for i in [0, 1, 2, 3]:
 print(i)

The previous for loop actually loops through its clause with the variable
i set to a successive value in the [0, 1, 2, 3] list in each iteration.

A common Python technique is to use range(len(someList)) with a for
loop to iterate over the indexes of a list. For example, enter the following
into the interactive shell:

>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders']
>>> for i in range(len(supplies)):
... print('Index ' + str(i) + ' in supplies is: ' + supplies[i])

Index 0 in supplies is: pens
Index 1 in supplies is: staplers
Index 2 in supplies is: flamethrowers
Index 3 in supplies is: binders

Using range(len(supplies)) in the previously shown for loop is handy
because the code in the loop can access the index (as the variable i) and the
value at that index (as supplies[i]). Best of all, range(len(supplies)) will iterate
through all the indexes of supplies, no matter how many items it contains.

The in and not in Operators
You can determine whether a value is or isn’t in a list with the in and not in
operators. Like other operators, in and not in are used in expressions and
connect two values: a value to look for in a list and the list where it may be

Lists 85

found. These expressions will evaluate to a Boolean value. Enter the follow-
ing into the interactive shell:

>>> 'howdy' in ['hello', 'hi', 'howdy', 'heyas']
True
>>> spam = ['hello', 'hi', 'howdy', 'heyas']
>>> 'cat' in spam
False
>>> 'howdy' not in spam
False
>>> 'cat' not in spam
True

For example, the following program lets the user type in a pet name
and then checks to see whether the name is in a list of pets. Open a new file
editor window, enter the following code, and save it as myPets.py:

myPets = ['Zophie', 'Pooka', 'Fat-tail']
print('Enter a pet name:')
name = input()
if name not in myPets:
 print('I do not have a pet named ' + name)
else:
 print(name + ' is my pet.')

The output may look something like this:

Enter a pet name:
Footfoot
I do not have a pet named Footfoot

You can view the execution of this program at https://autbor.com/mypets/.

The Multiple Assignment Trick
The multiple assignment trick (technically called tuple unpacking) is a shortcut
that lets you assign multiple variables with the values in a list in one line of
code. So instead of doing this:

>>> cat = ['fat', 'gray', 'loud']
>>> size = cat[0]
>>> color = cat[1]
>>> disposition = cat[2]

you could type this line of code:

>>> cat = ['fat', 'gray', 'loud']
>>> size, color, disposition = cat

86 Chapter 4

The number of variables and the length of the list must be exactly
equal, or Python will give you a ValueError:

>>> cat = ['fat', 'gray', 'loud']
>>> size, color, disposition, name = cat
Traceback (most recent call last):
 File "<pyshell#84>", line 1, in <module>
 size, color, disposition, name = cat
ValueError: not enough values to unpack (expected 4, got 3)

Using the enumerate() Function with Lists
Instead of using the range(len(someList)) technique with a for loop to obtain
the integer index of the items in the list, you can call the enumerate() func-
tion instead. On each iteration of the loop, enumerate() will return two
values: the index of the item in the list, and the item in the list itself. For
example, this code is equivalent to the code in the “Using for Loops with
Lists” on page 84:

>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders']
>>> for index, item in enumerate(supplies):
... print('Index ' + str(index) + ' in supplies is: ' + item)

Index 0 in supplies is: pens
Index 1 in supplies is: staplers
Index 2 in supplies is: flamethrowers
Index 3 in supplies is: binders

The enumerate() function is useful if you need both the item and the
item’s index in the loop’s block.

Using the random.choice() and random.shuffle() Functions with Lists
The random module has a couple functions that accept lists for arguments. The
random.choice() function will return a randomly selected item from the list.
Enter the following into the interactive shell:

>>> import random
>>> pets = ['Dog', 'Cat', 'Moose']
>>> random.choice(pets)
'Dog'
>>> random.choice(pets)
'Cat'
>>> random.choice(pets)
'Cat'

You can consider random.choice(someList) to be a shorter form of
someList[random.randint(0, len(someList) – 1].

Lists 87

The random.shuffle() function will reorder the items in a list. This func-
tion modifies the list in place, rather than returning a new list. Enter the
following into the interactive shell:

>>> import random
>>> people = ['Alice', 'Bob', 'Carol', 'David']
>>> random.shuffle(people)
>>> people
['Carol', 'David', 'Alice', 'Bob']
>>> random.shuffle(people)
>>> people
['Alice', 'David', 'Bob', 'Carol']

Augmented Assignment Operators
When assigning a value to a variable, you will frequently use the variable
itself. For example, after assigning 42 to the variable spam, you would increase
the value in spam by 1 with the following code:

>>> spam = 42
>>> spam = spam + 1
>>> spam
43

As a shortcut, you can use the augmented assignment operator += to
do the same thing:

>>> spam = 42
>>> spam += 1
>>> spam
43

There are augmented assignment operators for the +, -, *, /, and %
operators, described in Table 4-1.

Table 4-1: The Augmented Assignment Operators

Augmented assignment statement Equivalent assignment statement

spam += 1 spam = spam + 1

spam -= 1 spam = spam - 1

spam *= 1 spam = spam * 1

spam /= 1 spam = spam / 1

spam %= 1 spam = spam % 1

88 Chapter 4

The += operator can also do string and list concatenation, and the
*= operator can do string and list replication. Enter the following into the
interactive shell:

>>> spam = 'Hello,'
>>> spam += ' world!'
>>> spam
'Hello world!'
>>> bacon = ['Zophie']
>>> bacon *= 3
>>> bacon
['Zophie', 'Zophie', 'Zophie']

Methods
A method is the same thing as a function, except it is “called on” a value. For
example, if a list value were stored in spam, you would call the index() list
method (which I’ll explain shortly) on that list like so: spam.index('hello').
The method part comes after the value, separated by a period.

Each data type has its own set of methods. The list data type, for
example, has several useful methods for finding, adding, removing, and
otherwise manipulating values in a list.

Finding a Value in a List with the index() Method
List values have an index() method that can be passed a value, and if that
value exists in the list, the index of the value is returned. If the value isn’t
in the list, then Python produces a ValueError error. Enter the following into
the interactive shell:

>>> spam = ['hello', 'hi', 'howdy', 'heyas']
>>> spam.index('hello')
0
>>> spam.index('heyas')
3
>>> spam.index('howdy howdy howdy')
Traceback (most recent call last):
 File "<pyshell#31>", line 1, in <module>
 spam.index('howdy howdy howdy')
ValueError: 'howdy howdy howdy' is not in list

When there are duplicates of the value in the list, the index of its first
appearance is returned. Enter the following into the interactive shell, and
notice that index() returns 1, not 3:

>>> spam = ['Zophie', 'Pooka', 'Fat-tail', 'Pooka']
>>> spam.index('Pooka')
1

Lists 89

Adding Values to Lists with the append() and insert() Methods
To add new values to a list, use the append() and insert() methods. Enter the
following into the interactive shell to call the append() method on a list value
stored in the variable spam:

>>> spam = ['cat', 'dog', 'bat']
>>> spam.append('moose')
>>> spam
['cat', 'dog', 'bat', 'moose']

The previous append() method call adds the argument to the end of
the list. The insert() method can insert a value at any index in the list.
The first argument to insert() is the index for the new value, and the sec-
ond argument is the new value to be inserted. Enter the following into the
interactive shell:

>>> spam = ['cat', 'dog', 'bat']
>>> spam.insert(1, 'chicken')
>>> spam
['cat', 'chicken', 'dog', 'bat']

Notice that the code is spam.append('moose') and spam.insert(1, 'chicken'),
not spam = spam.append('moose') and spam = spam.insert(1, 'chicken'). Neither
append() nor insert() gives the new value of spam as its return value. (In fact,
the return value of append() and insert() is None, so you definitely wouldn’t
want to store this as the new variable value.) Rather, the list is modified in
place. Modifying a list in place is covered in more detail later in “Mutable and
Immutable Data Types” on page 94.

Methods belong to a single data type. The append() and insert() methods
are list methods and can be called only on list values, not on other values
such as strings or integers. Enter the following into the interactive shell, and
note the AttributeError error messages that show up:

>>> eggs = 'hello'
>>> eggs.append('world')
Traceback (most recent call last):
 File "<pyshell#19>", line 1, in <module>
 eggs.append('world')
AttributeError: 'str' object has no attribute 'append'
>>> bacon = 42
>>> bacon.insert(1, 'world')
Traceback (most recent call last):
 File "<pyshell#22>", line 1, in <module>
 bacon.insert(1, 'world')
AttributeError: 'int' object has no attribute 'insert'

90 Chapter 4

Removing Values from Lists with the remove() Method
The remove() method is passed the value to be removed from the list it is
called on. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam.remove('bat')
>>> spam
['cat', 'rat', 'elephant']

Attempting to delete a value that does not exist in the list will result in
a ValueError error. For example, enter the following into the interactive shell
and notice the error that is displayed:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam.remove('chicken')
Traceback (most recent call last):
 File "<pyshell#11>", line 1, in <module>
 spam.remove('chicken')
ValueError: list.remove(x): x not in list

If the value appears multiple times in the list, only the first instance of
the value will be removed. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'cat', 'hat', 'cat']
>>> spam.remove('cat')
>>> spam
['bat', 'rat', 'cat', 'hat', 'cat']

The del statement is good to use when you know the index of the value
you want to remove from the list. The remove() method is useful when you
know the value you want to remove from the list.

Sorting the Values in a List with the sort() Method
Lists of number values or lists of strings can be sorted with the sort()
method. For example, enter the following into the interactive shell:

>>> spam = [2, 5, 3.14, 1, -7]
>>> spam.sort()
>>> spam
[-7, 1, 2, 3.14, 5]
>>> spam = ['ants', 'cats', 'dogs', 'badgers', 'elephants']
>>> spam.sort()
>>> spam
['ants', 'badgers', 'cats', 'dogs', 'elephants']

Lists 91

You can also pass True for the reverse keyword argument to have sort()
sort the values in reverse order. Enter the following into the interactive shell:

>>> spam.sort(reverse=True)
>>> spam
['elephants', 'dogs', 'cats', 'badgers', 'ants']

There are three things you should note about the sort() method. First,
the sort() method sorts the list in place; don’t try to capture the return
value by writing code like spam = spam.sort().

Second, you cannot sort lists that have both number values and string
values in them, since Python doesn’t know how to compare these values.
Enter the following into the interactive shell and notice the TypeError error:

>>> spam = [1, 3, 2, 4, 'Alice', 'Bob']
>>> spam.sort()
Traceback (most recent call last):
 File "<pyshell#70>", line 1, in <module>
 spam.sort()
TypeError: '<' not supported between instances of 'str' and 'int'

Third, sort() uses “ASCIIbetical order” rather than actual alphabetical
order for sorting strings. This means uppercase letters come before lower-
case letters. Therefore, the lowercase a is sorted so that it comes after the
uppercase Z. For an example, enter the following into the interactive shell:

>>> spam = ['Alice', 'ants', 'Bob', 'badgers', 'Carol', 'cats']
>>> spam.sort()
>>> spam
['Alice', 'Bob', 'Carol', 'ants', 'badgers', 'cats']

If you need to sort the values in regular alphabetical order, pass str.lower
for the key keyword argument in the sort() method call.

>>> spam = ['a', 'z', 'A', 'Z']
>>> spam.sort(key=str.lower)
>>> spam
['a', 'A', 'z', 'Z']

This causes the sort() function to treat all the items in the list as if they
were lowercase without actually changing the values in the list.

Reversing the Values in a List with the reverse() Method
If you need to quickly reverse the order of the items in a list, you can call
the reverse() list method. Enter the following into the interactive shell:

>>> spam = ['cat', 'dog', 'moose']
>>> spam.reverse()
>>> spam
['moose', 'dog', 'cat']

92 Chapter 4

Like the sort() list method, reverse() doesn’t return a list. This is why
you write spam.reverse(), instead of spam = spam.reverse().

Example Program: Magic 8 Ball with a List
Using lists, you can write a much more elegant version of the previous chap-
ter’s Magic 8 Ball program. Instead of several lines of nearly identical elif
statements, you can create a single list that the code works with. Open a new
file editor window and enter the following code. Save it as magic8Ball2.py.

import random

messages = ['It is certain',
 'It is decidedly so',
 'Yes definitely',
 'Reply hazy try again',
 'Ask again later',
 'Concentrate and ask again',
 'My reply is no',

E XCE P T IONS TO INDE N TAT ION RUL E S IN PY T HON

In most cases, the amount of indentation for a line of code tells Python what
block it is in. There are some exceptions to this rule, however. For example, lists
can actually span several lines in the source code file. The indentation of these
lines does not matter; Python knows that the list is not finished until it sees the
ending square bracket. For example, you can have code that looks like this:

spam = ['apples',
 'oranges',
 'bananas',
'cats']
print(spam)

Of course, practically speaking, most people use Python’s behavior to
make their lists look pretty and readable, like the messages list in the Magic 8
Ball program.

You can also split up a single instruction across multiple lines using the \
line continuation character at the end. Think of \ as saying, “This instruction
continues on the next line.” The indentation on the line after a \ line continua-
tion is not significant. For example, the following is valid Python code:

print('Four score and seven ' + \
 'years ago...')

These tricks are useful when you want to rearrange long lines of Python
code to be a bit more readable.

Lists 93

 'Outlook not so good',
 'Very doubtful']

print(messages[random.randint(0, len(messages) - 1)])

You can view the execution of this program at https://autbor.com​
/magic8ball2/.

When you run this program, you’ll see that it works the same as the
previous magic8Ball.py program.

Notice the expression you use as the index for messages: random.randint
(0, len(messages) - 1). This produces a random number to use for the
index, regardless of the size of messages. That is, you’ll get a random number
between 0 and the value of len(messages) - 1. The benefit of this approach
is that you can easily add and remove strings to the messages list without
changing other lines of code. If you later update your code, there will be
fewer lines you have to change and fewer chances for you to introduce bugs.

Sequence Data Types
Lists aren’t the only data types that represent ordered sequences of values.
For example, strings and lists are actually similar if you consider a string to
be a “list” of single text characters. The Python sequence data types include
lists, strings, range objects returned by range(), and tuples (explained in the
“The Tuple Data Type” on page 96). Many of the things you can do with
lists can also be done with strings and other values of sequence types: index-
ing; slicing; and using them with for loops, with len(), and with the in and
not in operators. To see this, enter the following into the interactive shell:

>>> name = 'Zophie'
>>> name[0]
'Z'
>>> name[-2]
'i'
>>> name[0:4]
'Zoph'
>>> 'Zo' in name
True
>>> 'z' in name
False
>>> 'p' not in name
False
>>> for i in name:
... print('* * * ' + i + ' * * *')

* * * Z * * *
* * * o * * *
* * * p * * *
* * * h * * *
* * * i * * *
* * * e * * *

https://autbor.com/magic8ball2/
https://autbor.com/magic8ball2/

94 Chapter 4

Mutable and Immutable Data Types
But lists and strings are different in an important way. A list value is a mutable
data type: it can have values added, removed, or changed. However, a string
is immutable: it cannot be changed. Trying to reassign a single character in a
string results in a TypeError error, as you can see by entering the following into
the interactive shell:

>>> name = 'Zophie a cat'
>>> name[7] = 'the'
Traceback (most recent call last):
 File "<pyshell#50>", line 1, in <module>
 name[7] = 'the'
TypeError: 'str' object does not support item assignment

The proper way to “mutate” a string is to use slicing and concatenation
to build a new string by copying from parts of the old string. Enter the fol-
lowing into the interactive shell:

>>> name = 'Zophie a cat'
>>> newName = name[0:7] + 'the' + name[8:12]
>>> name
'Zophie a cat'
>>> newName
'Zophie the cat'

We used [0:7] and [8:12] to refer to the characters that we don’t wish
to replace. Notice that the original 'Zophie a cat' string is not modified,
because strings are immutable.

Although a list value is mutable, the second line in the following code
does not modify the list eggs:

>>> eggs = [1, 2, 3]
>>> eggs = [4, 5, 6]
>>> eggs
[4, 5, 6]

The list value in eggs isn’t being changed here; rather, an entirely new
and different list value ([4, 5, 6]) is overwriting the old list value ([1, 2,
3]). This is depicted in Figure 4-2.

If you wanted to actually modify the original list in eggs to contain
[4, 5, 6], you would have to do something like this:

>>> eggs = [1, 2, 3]
>>> del eggs[2]
>>> del eggs[1]
>>> del eggs[0]
>>> eggs.append(4)
>>> eggs.append(5)
>>> eggs.append(6)
>>> eggs
[4, 5, 6]

Lists 95

Figure 4-2: When eggs = [4, 5, 6] is executed, the contents of eggs are replaced
with a new list value.

In the first example, the list value that eggs ends up with is the same
list value it started with. It’s just that this list has been changed, rather than
overwritten. Figure 4-3 depicts the seven changes made by the first seven
lines in the previous interactive shell example.

Figure 4-3: The del statement and the append() method modify the same list value
in place.

Changing a value of a mutable data type (like what the del statement
and append() method do in the previous example) changes the value in
place, since the variable’s value is not replaced with a new list value.

Mutable versus immutable types may seem like a meaningless dis-
tinction, but “Passing References” on page 100 will explain the different
behavior when calling functions with mutable arguments versus immu-
table arguments. But first, let’s find out about the tuple data type, which is
an immutable form of the list data type.

96 Chapter 4

The Tuple Data Type
The tuple data type is almost identical to the list data type, except in two ways.
First, tuples are typed with parentheses, (and), instead of square brackets,
[and]. For example, enter the following into the interactive shell:

>>> eggs = ('hello', 42, 0.5)
>>> eggs[0]
'hello'
>>> eggs[1:3]
(42, 0.5)
>>> len(eggs)
3

But the main way that tuples are different from lists is that tuples, like
strings, are immutable. Tuples cannot have their values modified, appended,
or removed. Enter the following into the interactive shell, and look at the
TypeError error message:

>>> eggs = ('hello', 42, 0.5)
>>> eggs[1] = 99
Traceback (most recent call last):
 File "<pyshell#5>", line 1, in <module>
 eggs[1] = 99
TypeError: 'tuple' object does not support item assignment

If you have only one value in your tuple, you can indicate this by plac-
ing a trailing comma after the value inside the parentheses. Otherwise,
Python will think you’ve just typed a value inside regular parentheses. The
comma is what lets Python know this is a tuple value. (Unlike some other
programming languages, it’s fine to have a trailing comma after the last
item in a list or tuple in Python.) Enter the following type() function calls
into the interactive shell to see the distinction:

>>> type(('hello',))
<class 'tuple'>
>>> type(('hello'))
<class 'str'>

You can use tuples to convey to anyone reading your code that you
don’t intend for that sequence of values to change. If you need an ordered
sequence of values that never changes, use a tuple. A second benefit of
using tuples instead of lists is that, because they are immutable and their
contents don’t change, Python can implement some optimizations that
make code using tuples slightly faster than code using lists.

Lists 97

Converting Types with the list() and tuple() Functions
Just like how str(42) will return '42', the string representation of the integer
42, the functions list() and tuple() will return list and tuple versions of the
values passed to them. Enter the following into the interactive shell, and
notice that the return value is of a different data type than the value passed:

>>> tuple(['cat', 'dog', 5])
('cat', 'dog', 5)
>>> list(('cat', 'dog', 5))
['cat', 'dog', 5]
>>> list('hello')
['h', 'e', 'l', 'l', 'o']

Converting a tuple to a list is handy if you need a mutable version of a
tuple value.

References
As you’ve seen, variables “store” strings and integer values. However, this
explanation is a simplification of what Python is actually doing. Technically,
variables are storing references to the computer memory locations where
the values are stored. Enter the following into the interactive shell:

>>> spam = 42
>>> cheese = spam
>>> spam = 100
>>> spam
100
>>> cheese
42

When you assign 42 to the spam variable, you are actually creating the 42
value in the computer’s memory and storing a reference to it in the spam vari-
able. When you copy the value in spam and assign it to the variable cheese,
you are actually copying the reference. Both the spam and cheese variables
refer to the 42 value in the computer’s memory. When you later change the
value in spam to 100, you’re creating a new 100 value and storing a reference
to it in spam. This doesn’t affect the value in cheese. Integers are immutable
values that don’t change; changing the spam variable is actually making it
refer to a completely different value in memory.

But lists don’t work this way, because list values can change; that is,
lists are mutable. Here is some code that will make this distinction easier to
understand. Enter this into the interactive shell:

 >>> spam = [0, 1, 2, 3, 4, 5]
 >>> cheese = spam # The reference is being copied, not the list.
 >>> cheese[1] = 'Hello!' # This changes the list value.

>>> spam

98 Chapter 4

[0, 'Hello!', 2, 3, 4, 5]
>>> cheese # The cheese variable refers to the same list.
[0, 'Hello!', 2, 3, 4, 5]

This might look odd to you. The code touched only the cheese list, but it
seems that both the cheese and spam lists have changed.

When you create the list , you assign a reference to it in the spam vari-
able. But the next line  copies only the list reference in spam to cheese, not
the list value itself. This means the values stored in spam and cheese now both
refer to the same list. There is only one underlying list because the list itself
was never actually copied. So when you modify the first element of cheese ,
you are modifying the same list that spam refers to.

Remember that variables are like boxes that contain values. The previ-
ous figures in this chapter show that lists in boxes aren’t exactly accurate,
because list variables don’t actually contain lists—they contain references
to lists. (These references will have ID numbers that Python uses inter-
nally, but you can ignore them.) Using boxes as a metaphor for variables,
Figure 4-4 shows what happens when a list is assigned to the spam variable.

Figure 4-4: spam = [0, 1, 2, 3, 4, 5] stores a
reference to a list, not the actual list.

Then, in Figure 4-5, the reference in spam is copied to cheese. Only a
new reference was created and stored in cheese, not a new list. Note how
both references refer to the same list.

Figure 4-5: spam = cheese copies the reference, not the list.

Lists 99

When you alter the list that cheese refers to, the list that spam refers to is
also changed, because both cheese and spam refer to the same list. You can
see this in Figure 4-6.

Figure 4-6: cheese[1] = 'Hello!' modifies the list that both
variables refer to.

Although Python variables technically contain references to values,
people often casually say that the variable contains the value.

Identity and the id() Function
You may be wondering why the weird behavior with mutable lists in the pre-
vious section doesn’t happen with immutable values like integers or strings.
We can use Python’s id() function to understand this. All values in Python
have a unique identity that can be obtained with the id() function. Enter
the following into the interactive shell:

>>> id('Howdy') # The returned number will be different on your machine.
44491136

When Python runs id('Howdy'), it creates the 'Howdy' string in the com-
puter’s memory. The numeric memory address where the string is stored
is returned by the id() function. Python picks this address based on which
memory bytes happen to be free on your computer at the time, so it’ll be
different each time you run this code.

Like all strings, 'Howdy' is immutable and cannot be changed. If you
“change” the string in a variable, a new string object is being made at a
different place in memory, and the variable refers to this new string. For
example, enter the following into the interactive shell and see how the
identity of the string referred to by bacon changes:

>>> bacon = 'Hello'
>>> id(bacon)
44491136
>>> bacon += ' world!' # A new string is made from 'Hello' and ' world!'.
>>> id(bacon) # bacon now refers to a completely different string.
44609712

100 Chapter 4

However, lists can be modified because they are mutable objects. The
append() method doesn’t create a new list object; it changes the existing list
object. We call this “modifying the object in-place.”

>>> eggs = ['cat', 'dog'] # This creates a new list.
>>> id(eggs)
35152584
>>> eggs.append('moose') # append() modifies the list "in place".
>>> id(eggs) # eggs still refers to the same list as before.
35152584
>>> eggs = ['bat', 'rat', 'cow'] # This creates a new list, which has a new
identity.
>>> id(eggs) # eggs now refers to a completely different list.
44409800

If two variables refer to the same list (like spam and cheese in the previ-
ous section) and the list value itself changes, both variables are affected
because they both refer to the same list. The append(), extend(), remove(),
sort(), reverse(), and other list methods modify their lists in place.

Python’s automatic garbage collector deletes any values not being referred
to by any variables to free up memory. You don’t need to worry about how
the garbage collector works, which is a good thing: manual memory man-
agement in other programming languages is a common source of bugs.

Passing References
References are particularly important for understanding how arguments
get passed to functions. When a function is called, the values of the argu-
ments are copied to the parameter variables. For lists (and dictionaries,
which I’ll describe in the next chapter), this means a copy of the reference
is used for the parameter. To see the consequences of this, open a new file
editor window, enter the following code, and save it as passingReference.py:

def eggs(someParameter):
 someParameter.append('Hello')

spam = [1, 2, 3]
eggs(spam)
print(spam)

Notice that when eggs() is called, a return value is not used to assign a
new value to spam. Instead, it modifies the list in place, directly. When run,
this program produces the following output:

[1, 2, 3, 'Hello']

Even though spam and someParameter contain separate references, they
both refer to the same list. This is why the append('Hello') method call inside
the function affects the list even after the function call has returned.

Lists 101

Keep this behavior in mind: forgetting that Python handles list and dic-
tionary variables this way can lead to confusing bugs.

The copy Module’s copy() and deepcopy() Functions
Although passing around references is often the handiest way to deal with
lists and dictionaries, if the function modifies the list or dictionary that is
passed, you may not want these changes in the original list or dictionary
value. For this, Python provides a module named copy that provides both
the copy() and deepcopy() functions. The first of these, copy.copy(), can be
used to make a duplicate copy of a mutable value like a list or dictionary,
not just a copy of a reference. Enter the following into the interactive shell:

>>> import copy
>>> spam = ['A', 'B', 'C', 'D']
>>> id(spam)
44684232
>>> cheese = copy.copy(spam)
>>> id(cheese) # cheese is a different list with different identity.
44685832
>>> cheese[1] = 42
>>> spam
['A', 'B', 'C', 'D']
>>> cheese
['A', 42, 'C', 'D']

Now the spam and cheese variables refer to separate lists, which is why
only the list in cheese is modified when you assign 42 at index 1. As you can
see in Figure 4-7, the reference ID numbers are no longer the same for both
variables because the variables refer to independent lists.

Figure 4-7: cheese = copy.copy(spam) creates a second list that can be modified
independently of the first.

If the list you need to copy contains lists, then use the copy.deepcopy()
function instead of copy.copy(). The deepcopy() function will copy these
inner lists as well.

102 Chapter 4

A Short Program: Conway’s Game of Life
Conway’s Game of Life is an example of cellular automata: a set of rules
governing the behavior of a field made up of discrete cells. In practice, it
creates a pretty animation to look at. You can draw out each step on graph
paper, using the squares as cells. A filled-in square will be “alive” and an
empty square will be “dead.” If a living square has two or three living neigh-
bors, it continues to live on the next step. If a dead square has exactly three
living neighbors, it comes alive on the next step. Every other square dies or
remains dead on the next step. You can see an example of the progression
of steps in Figure 4-8.

B C D EA F
1
2
3
4
5
6

B C D EA F
1
2
3
4
5
6

B C D EA F
1
2
3
4
5
6

B C D EA F
1
2
3
4
5
6

Figure 4-8: Four steps in a Conway’s Game of Life simulation

Even though the rules are simple, there are many surprising behaviors
that emerge. Patterns in Conway’s Game of Life can move, self-replicate, or
even mimic CPUs. But at the foundation of all of this complex, advanced
behavior is a rather simple program.

We can use a list of lists to represent the two-dimensional field. The
inner list represents each column of squares and stores a '#' hash string for
living squares and a ' ' space string for dead squares. Type the following
source code into the file editor, and save the file as conway.py. It’s fine if you
don’t quite understand how all of the code works; just enter it and follow
along with comments and explanations provided here as close as you can:

Conway's Game of Life
import random, time, copy
WIDTH = 60
HEIGHT = 20

Create a list of list for the cells:
nextCells = []
for x in range(WIDTH):
 column = [] # Create a new column.
 for y in range(HEIGHT):
 if random.randint(0, 1) == 0:
 column.append('#') # Add a living cell.
 else:
 column.append(' ') # Add a dead cell.
 nextCells.append(column) # nextCells is a list of column lists.

while True: # Main program loop.
 print('\n\n\n\n\n') # Separate each step with newlines.
 currentCells = copy.deepcopy(nextCells)

Lists 103

 # Print currentCells on the screen:
 for y in range(HEIGHT):
 for x in range(WIDTH):
 print(currentCells[x][y], end='') # Print the # or space.
 print() # Print a newline at the end of the row.

 # Calculate the next step's cells based on current step's cells:
 for x in range(WIDTH):
 for y in range(HEIGHT):
 # Get neighboring coordinates:
 # `% WIDTH` ensures leftCoord is always between 0 and WIDTH - 1
 leftCoord = (x - 1) % WIDTH
 rightCoord = (x + 1) % WIDTH
 aboveCoord = (y - 1) % HEIGHT
 belowCoord = (y + 1) % HEIGHT

 # Count number of living neighbors:
 numNeighbors = 0
 if currentCells[leftCoord][aboveCoord] == '#':
 numNeighbors += 1 # Top-left neighbor is alive.
 if currentCells[x][aboveCoord] == '#':
 numNeighbors += 1 # Top neighbor is alive.
 if currentCells[rightCoord][aboveCoord] == '#':
 numNeighbors += 1 # Top-right neighbor is alive.
 if currentCells[leftCoord][y] == '#':
 numNeighbors += 1 # Left neighbor is alive.
 if currentCells[rightCoord][y] == '#':
 numNeighbors += 1 # Right neighbor is alive.
 if currentCells[leftCoord][belowCoord] == '#':
 numNeighbors += 1 # Bottom-left neighbor is alive.
 if currentCells[x][belowCoord] == '#':
 numNeighbors += 1 # Bottom neighbor is alive.
 if currentCells[rightCoord][belowCoord] == '#':
 numNeighbors += 1 # Bottom-right neighbor is alive.

 # Set cell based on Conway's Game of Life rules:
 if currentCells[x][y] == '#' and (numNeighbors == 2 or
numNeighbors == 3):
 # Living cells with 2 or 3 neighbors stay alive:
 nextCells[x][y] = '#'
 elif currentCells[x][y] == ' ' and numNeighbors == 3:
 # Dead cells with 3 neighbors become alive:
 nextCells[x][y] = '#'
 else:
 # Everything else dies or stays dead:
 nextCells[x][y] = ' '
 time.sleep(1) # Add a 1-second pause to reduce flickering.

Let’s look at this code line by line, starting at the top.

Conway's Game of Life
import random, time, copy
WIDTH = 60
HEIGHT = 20

104 Chapter 4

First we import modules that contain functions we’ll need, namely the
random.randint(), time.sleep(), and copy.deepcopy() functions.

Create a list of list for the cells:
nextCells = []
for x in range(WIDTH):
 column = [] # Create a new column.
 for y in range(HEIGHT):
 if random.randint(0, 1) == 0:
 column.append('#') # Add a living cell.
 else:
 column.append(' ') # Add a dead cell.
 nextCells.append(column) # nextCells is a list of column lists.

The very first step of our cellular automata will be completely random.
We need to create a list of lists data structure to store the '#' and ' ' strings
that represent a living or dead cell, and their place in the list of lists reflects
their position on the screen. The inner lists each represent a column of
cells. The random.randint(0, 1) call gives an even 50/50 chance between the
cell starting off alive or dead.

We put this list of lists in a variable called nextCells, because the first
step in our main program loop will be to copy nextCells into currentCells.
For our list of lists data structure, the x-coordinates start at 0 on the left
and increase going right, while the y-coordinates start at 0 at the top and
increase going down. So nextCells[0][0] will represent the cell at the top left
of the screen, while nextCells[1][0] represents the cell to the right of that
cell and nextCells[0][1] represents the cell beneath it.

while True: # Main program loop.
 print('\n\n\n\n\n') # Separate each step with newlines.
 currentCells = copy.deepcopy(nextCells)

Each iteration of our main program loop will be a single step of our
cellular automata. On each step, we’ll copy nextCells to currentCells, print
currentCells on the screen, and then use the cells in currentCells to calculate
the cells in nextCells.

 # Print currentCells on the screen:
 for y in range(HEIGHT):
 for x in range(WIDTH):
 print(currentCells[x][y], end='') # Print the # or space.
 print() # Print a newline at the end of the row.

These nested for loops ensure that we print a full row of cells to the
screen, followed by a newline character at the end of the row. We repeat
this for each row in nextCells.

 # Calculate the next step's cells based on current step's cells:
 for x in range(WIDTH):
 for y in range(HEIGHT):
 # Get neighboring coordinates:

Lists 105

 # `% WIDTH` ensures leftCoord is always between 0 and WIDTH - 1
 leftCoord = (x - 1) % WIDTH
 rightCoord = (x + 1) % WIDTH
 aboveCoord = (y - 1) % HEIGHT
 belowCoord = (y + 1) % HEIGHT

Next, we need to use two nested for loops to calculate each cell for the
next step. The living or dead state of the cell depends on the neighbors, so
let’s first calculate the index of the cells to the left, right, above, and below
the current x- and y-coordinates.

The % mod operator performs a “wraparound.” The left neighbor of a
cell in the leftmost column 0 would be 0 - 1 or -1. To wrap this around to
the rightmost column’s index, 59, we calculate (0 - 1) % WIDTH. Since WIDTH is
60, this expression evaluates to 59. This mod-wraparound technique works
for the right, above, and below neighbors as well.

 # Count number of living neighbors:
 numNeighbors = 0
 if currentCells[leftCoord][aboveCoord] == '#':
 numNeighbors += 1 # Top-left neighbor is alive.
 if currentCells[x][aboveCoord] == '#':
 numNeighbors += 1 # Top neighbor is alive.
 if currentCells[rightCoord][aboveCoord] == '#':
 numNeighbors += 1 # Top-right neighbor is alive.
 if currentCells[leftCoord][y] == '#':
 numNeighbors += 1 # Left neighbor is alive.
 if currentCells[rightCoord][y] == '#':
 numNeighbors += 1 # Right neighbor is alive.
 if currentCells[leftCoord][belowCoord] == '#':
 numNeighbors += 1 # Bottom-left neighbor is alive.
 if currentCells[x][belowCoord] == '#':
 numNeighbors += 1 # Bottom neighbor is alive.
 if currentCells[rightCoord][belowCoord] == '#':
 numNeighbors += 1 # Bottom-right neighbor is alive.

To decide if the cell at nextCells[x][y] should be living or dead, we need
to count the number of living neighbors currentCells[x][y] has. This series
of if statements checks each of the eight neighbors of this cell, and adds 1
to numNeighbors for each living one.

 # Set cell based on Conway's Game of Life rules:
 if currentCells[x][y] == '#' and (numNeighbors == 2 or
numNeighbors == 3):
 # Living cells with 2 or 3 neighbors stay alive:
 nextCells[x][y] = '#'
 elif currentCells[x][y] == ' ' and numNeighbors == 3:
 # Dead cells with 3 neighbors become alive:
 nextCells[x][y] = '#'
 else:
 # Everything else dies or stays dead:
 nextCells[x][y] = ' '
 time.sleep(1) # Add a 1-second pause to reduce flickering.

106 Chapter 4

Now that we know the number of living neighbors for the cell at
currentCells[x][y], we can set nextCells[x][y] to either '#' or ' '. After we
loop over every possible x- and y-coordinate, the program takes a 1-second
pause by calling time.sleep(1). Then the program execution goes back to
the start of the main program loop to continue with the next step.

Several patterns have been discovered with names such as “glider,” “pro-
peller,” or “heavyweight spaceship.” The glider pattern, pictured in Figure
4-8, results in a pattern that “moves” diagonally every four steps. You can
create a single glider by replacing this line in our conway.py program:

 if random.randint(0, 1) == 0:

with this line:

 if (x, y) in ((1, 0), (2, 1), (0, 2), (1, 2), (2, 2)):

You can find out more about the intriguing devices made using Conway’s
Game of Life by searching the web. And you can find other short, text-based
Python programs like this one at https://github.com/asweigart/pythonstdiogames.

Summary
Lists are useful data types since they allow you to write code that works on a
modifiable number of values in a single variable. Later in this book, you will
see programs using lists to do things that would be difficult or impossible to
do without them.

Lists are a sequence data type that is mutable, meaning that their
contents can change. Tuples and strings, though also sequence data types,
are immutable and cannot be changed. A variable that contains a tuple or
string value can be overwritten with a new tuple or string value, but this is
not the same thing as modifying the existing value in place—like, say, the
append() or remove() methods do on lists.

Variables do not store list values directly; they store references to lists.
This is an important distinction when you are copying variables or passing
lists as arguments in function calls. Because the value that is being copied
is the list reference, be aware that any changes you make to the list might
impact another variable in your program. You can use copy() or deepcopy()
if you want to make changes to a list in one variable without modifying the
original list.

Practice Questions

1.	 What is []?

2.	 How would you assign the value 'hello' as the third value in a list stored
in a variable named spam? (Assume spam contains [2, 4, 6, 8, 10].)

Lists 107

For the following three questions, let’s say spam contains the list ['a',
'b', 'c', 'd'].

3.	 What does spam[int(int('3' * 2) // 11)] evaluate to?

4.	 What does spam[-1] evaluate to?

5.	 What does spam[:2] evaluate to?

For the following three questions, let’s say bacon contains the list
[3.14, 'cat', 11, 'cat', True].

6.	 What does bacon.index('cat') evaluate to?

7.	 What does bacon.append(99) make the list value in bacon look like?

8.	 What does bacon.remove('cat') make the list value in bacon look like?

9.	 What are the operators for list concatenation and list replication?

10.	 What is the difference between the append() and insert() list methods?

11.	 What are two ways to remove values from a list?

12.	 Name a few ways that list values are similar to string values.

13.	 What is the difference between lists and tuples?

14.	 How do you type the tuple value that has just the integer value 42 in it?

15.	 How can you get the tuple form of a list value? How can you get the list
form of a tuple value?

16.	 Variables that “contain” list values don’t actually contain lists directly.
What do they contain instead?

17.	 What is the difference between copy.copy() and copy.deepcopy()?

Practice Projects
For practice, write programs to do the following tasks.

Comma Code
Say you have a list value like this:

spam = ['apples', 'bananas', 'tofu', 'cats']

Write a function that takes a list value as an argument and returns
a string with all the items separated by a comma and a space, with and
inserted before the last item. For example, passing the previous spam list to
the function would return 'apples, bananas, tofu, and cats'. But your func-
tion should be able to work with any list value passed to it. Be sure to test
the case where an empty list [] is passed to your function.

Coin Flip Streaks
For this exercise, we’ll try doing an experiment. If you flip a coin 100 times
and write down an “H” for each heads and “T” for each tails, you’ll create
a list that looks like “T T T T H H H H T T.” If you ask a human to make

108 Chapter 4

up 100 random coin flips, you’ll probably end up with alternating head-
tail results like “H T H T H H T H T T,” which looks random (to humans),
but isn’t mathematically random. A human will almost never write down
a streak of six heads or six tails in a row, even though it is highly likely
to happen in truly random coin flips. Humans are predictably bad at
being random.

Write a program to find out how often a streak of six heads or a streak
of six tails comes up in a randomly generated list of heads and tails. Your
program breaks up the experiment into two parts: the first part generates
a list of randomly selected 'heads' and 'tails' values, and the second part
checks if there is a streak in it. Put all of this code in a loop that repeats the
experiment 10,000 times so we can find out what percentage of the coin
flips contains a streak of six heads or tails in a row. As a hint, the function
call random.randint(0, 1) will return a 0 value 50% of the time and a 1 value
the other 50% of the time.

You can start with the following template:

import random
numberOfStreaks = 0
for experimentNumber in range(10000):
 # Code that creates a list of 100 'heads' or 'tails' values.

 # Code that checks if there is a streak of 6 heads or tails in a row.
print('Chance of streak: %s%%' % (numberOfStreaks / 100))

Of course, this is only an estimate, but 10,000 is a decent sample size.
Some knowledge of mathematics could give you the exact answer and save
you the trouble of writing a program, but programmers are notoriously
bad at math.

Character Picture Grid
Say you have a list of lists where each value in the inner lists is a one-character
string, like this:

grid = [['.', '.', '.', '.', '.', '.'],
 ['.', 'O', 'O', '.', '.', '.'],
 ['O', 'O', 'O', 'O', '.', '.'],
 ['O', 'O', 'O', 'O', 'O', '.'],
 ['.', 'O', 'O', 'O', 'O', 'O'],
 ['O', 'O', 'O', 'O', 'O', '.'],
 ['O', 'O', 'O', 'O', '.', '.'],
 ['.', 'O', 'O', '.', '.', '.'],
 ['.', '.', '.', '.', '.', '.']]

Think of grid[x][y] as being the character at the x- and y-coordinates
of a “picture” drawn with text characters. The (0, 0) origin is in the upper-
left corner, the x-coordinates increase going right, and the y-coordinates
increase going down.

Lists 109

Copy the previous grid value, and write code that uses it to print
the image.

..OO.OO..

.OOOOOOO.

.OOOOOOO.

..OOOOO..

...OOO...

....O....

Hint: You will need to use a loop in a loop in order to print grid[0][0],
then grid[1][0], then grid[2][0], and so on, up to grid[8][0]. This will fin-
ish the first row, so then print a newline. Then your program should print
grid[0][1], then grid[1][1], then grid[2][1], and so on. The last thing your
program will print is grid[8][5].

Also, remember to pass the end keyword argument to print() if you
don’t want a newline printed automatically after each print() call.

In this chapter, I will cover the dictionary
data type, which provides a flexible way to

access and organize data. Then, combining
dictionaries with your knowledge of lists from

the previous chapter, you’ll learn how to create a data
structure to model a tic-tac-toe board.

The Dictionary Data Type
Like a list, a dictionary is a mutable collection of many values. But unlike
indexes for lists, indexes for dictionaries can use many different data types,
not just integers. Indexes for dictionaries are called keys, and a key with its
associated value is called a key-value pair.

In code, a dictionary is typed with braces, {}. Enter the following into
the interactive shell:

>>> myCat = {'size': 'fat', 'color': 'gray', 'disposition': 'loud'}

5
D I C T I O N A R I E S A N D
S T R U C T U R I N G D A T A

112 Chapter 5

This assigns a dictionary to the myCat variable. This dictionary’s keys are
'size', 'color', and 'disposition'. The values for these keys are 'fat', 'gray',
and 'loud', respectively. You can access these values through their keys:

>>> myCat['size']
'fat'
>>> 'My cat has ' + myCat['color'] + ' fur.'
'My cat has gray fur.'

Dictionaries can still use integer values as keys, just like lists use inte-
gers for indexes, but they do not have to start at 0 and can be any number.

>>> spam = {12345: 'Luggage Combination', 42: 'The Answer'}

Dictionaries vs. Lists
Unlike lists, items in dictionaries are unordered. The first item in a list
named spam would be spam[0]. But there is no “first” item in a dictionary.
While the order of items matters for determining whether two lists are the
same, it does not matter in what order the key-value pairs are typed in a dic-
tionary. Enter the following into the interactive shell:

>>> spam = ['cats', 'dogs', 'moose']
>>> bacon = ['dogs', 'moose', 'cats']
>>> spam == bacon
False
>>> eggs = {'name': 'Zophie', 'species': 'cat', 'age': '8'}
>>> ham = {'species': 'cat', 'age': '8', 'name': 'Zophie'}
>>> eggs == ham
True

Because dictionaries are not ordered, they can’t be sliced like lists.
Trying to access a key that does not exist in a dictionary will result in

a KeyError error message, much like a list’s “out-of-range” IndexError error
message. Enter the following into the interactive shell, and notice the
error message that shows up because there is no 'color' key:

>>> spam = {'name': 'Zophie', 'age': 7}
>>> spam['color']
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 spam['color']
KeyError: 'color'

Dictionaries and Structuring Data 113

Though dictionaries are not ordered, the fact that you can have arbitrary
values for the keys allows you to organize your data in powerful ways. Say you
wanted your program to store data about your friends’ birthdays. You can use
a dictionary with the names as keys and the birthdays as values. Open a new
file editor window and enter the following code. Save it as birthdays.py.

 birthdays = {'Alice': 'Apr 1', 'Bob': 'Dec 12', 'Carol': 'Mar 4'}

while True:
 print('Enter a name: (blank to quit)')
 name = input()
 if name == '':
 break

  if name in birthdays:
  print(birthdays[name] + ' is the birthday of ' + name)

 else:
 print('I do not have birthday information for ' + name)
 print('What is their birthday?')
 bday = input()

  birthdays[name] = bday
 print('Birthday database updated.')

You can view the execution of this program at https://autbor.com/bdaydb.
You create an initial dictionary and store it in birthdays . You can see if the
entered name exists as a key in the dictionary with the in keyword , just as
you did for lists. If the name is in the dictionary, you access the associated
value using square brackets ; if not, you can add it using the same square
bracket syntax combined with the assignment operator .

When you run this program, it will look like this:

Enter a name: (blank to quit)
Alice
Apr 1 is the birthday of Alice
Enter a name: (blank to quit)
Eve
I do not have birthday information for Eve
What is their birthday?
Dec 5
Birthday database updated.
Enter a name: (blank to quit)
Eve
Dec 5 is the birthday of Eve
Enter a name: (blank to quit)

Of course, all the data you enter in this program is forgotten when the
program terminates. You’ll learn how to save data to files on the hard drive
in Chapter 9.

114 Chapter 5

The keys(), values(), and items() Methods
There are three dictionary methods that will return list-like values of the
dictionary’s keys, values, or both keys and values: keys(), values(), and items().
The values returned by these methods are not true lists: they cannot be mod-
ified and do not have an append() method. But these data types (dict_keys,
dict_values, and dict_items, respectively) can be used in for loops. To see how
these methods work, enter the following into the interactive shell:

>>> spam = {'color': 'red', 'age': 42}
>>> for v in spam.values():
... print(v)

red
42

OR DE R E D DIC T ION A R IE S IN PY T HON 3.7

While they’re still not ordered and have no “first” key-value pair, dictionaries in
Python 3.7 and later will remember the insertion order of their key-value pairs
if you create a sequence value from them. For example, notice the order of
items in the lists made from the eggs and ham dictionaries matches the order in
which they were entered:

>>> eggs = {'name': 'Zophie', 'species': 'cat', 'age': '8'}
>>> list(eggs)
['name', 'species', 'age']
>>> ham = {'species': 'cat', 'age': '8', 'name': 'Zophie'}
>>> list(ham)
['species', 'age', 'name']

The dictionaries are still unordered, as you can’t access items in them
using integer indexes like eggs[0] or ham[2]. You shouldn’t rely on this behav-
ior, as dictionaries in older versions of Python don’t remember the insertion
order of key-value pairs. For example, notice how the list doesn’t match the
insertion order of the dictionary’s key-value pairs when I run this code in
Python 3.5:

>>> spam = {}
>>> spam['first key'] = 'value'
>>> spam['second key'] = 'value'
>>> spam['third key'] = 'value'
>>> list(spam)
['first key', 'third key', 'second key']

Dictionaries and Structuring Data 115

Here, a for loop iterates over each of the values in the spam dictionary.
A for loop can also iterate over the keys or both keys and values:

>>> for k in spam.keys():
... print(k)

color
age
>>> for i in spam.items():
... print(i)

('color', 'red')
('age', 42)

When you use the keys(), values(), and items() methods, a for loop
can iterate over the keys, values, or key-value pairs in a dictionary, respec-
tively. Notice that the values in the dict_items value returned by the items()
method are tuples of the key and value.

If you want a true list from one of these methods, pass its list-like return
value to the list() function. Enter the following into the interactive shell:

>>> spam = {'color': 'red', 'age': 42}
>>> spam.keys()
dict_keys(['color', 'age'])
>>> list(spam.keys())
['color', 'age']

The list(spam.keys()) line takes the dict_keys value returned from keys()
and passes it to list(), which then returns a list value of ['color', 'age'].

You can also use the multiple assignment trick in a for loop to assign
the key and value to separate variables. Enter the following into the interac-
tive shell:

>>> spam = {'color': 'red', 'age': 42}
>>> for k, v in spam.items():
... print('Key: ' + k + ' Value: ' + str(v))

Key: age Value: 42
Key: color Value: red

Checking Whether a Key or Value Exists in a Dictionary
Recall from the previous chapter that the in and not in operators can
check whether a value exists in a list. You can also use these operators to
see whether a certain key or value exists in a dictionary. Enter the following
into the interactive shell:

>>> spam = {'name': 'Zophie', 'age': 7}
>>> 'name' in spam.keys()
True

116 Chapter 5

>>> 'Zophie' in spam.values()
True
>>> 'color' in spam.keys()
False
>>> 'color' not in spam.keys()
True
>>> 'color' in spam
False

In the previous example, notice that 'color' in spam is essentially a
shorter version of writing 'color' in spam.keys(). This is always the case: if
you ever want to check whether a value is (or isn’t) a key in the dictionary, you
can simply use the in (or not in) keyword with the dictionary value itself.

The get() Method
It’s tedious to check whether a key exists in a dictionary before accessing
that key’s value. Fortunately, dictionaries have a get() method that takes two
arguments: the key of the value to retrieve and a fallback value to return if
that key does not exist.

Enter the following into the interactive shell:

>>> picnicItems = {'apples': 5, 'cups': 2}
>>> 'I am bringing ' + str(picnicItems.get('cups', 0)) + ' cups.'
'I am bringing 2 cups.'
>>> 'I am bringing ' + str(picnicItems.get('eggs', 0)) + ' eggs.'
'I am bringing 0 eggs.'

Because there is no 'eggs' key in the picnicItems dictionary, the default
value 0 is returned by the get() method. Without using get(), the code would
have caused an error message, such as in the following example:

>>> picnicItems = {'apples': 5, 'cups': 2}
>>> 'I am bringing ' + str(picnicItems['eggs']) + ' eggs.'
Traceback (most recent call last):
 File "<pyshell#34>", line 1, in <module>
 'I am bringing ' + str(picnicItems['eggs']) + ' eggs.'
KeyError: 'eggs'

The setdefault() Method
You’ll often have to set a value in a dictionary for a certain key only if that
key does not already have a value. The code looks something like this:

spam = {'name': 'Pooka', 'age': 5}
if 'color' not in spam:
 spam['color'] = 'black'

Dictionaries and Structuring Data 117

The setdefault() method offers a way to do this in one line of code. The
first argument passed to the method is the key to check for, and the second
argument is the value to set at that key if the key does not exist. If the key
does exist, the setdefault() method returns the key’s value. Enter the follow-
ing into the interactive shell:

>>> spam = {'name': 'Pooka', 'age': 5}
>>> spam.setdefault('color', 'black')
'black'
>>> spam
{'color': 'black', 'age': 5, 'name': 'Pooka'}
>>> spam.setdefault('color', 'white')
'black'
>>> spam
{'color': 'black', 'age': 5, 'name': 'Pooka'}

The first time setdefault() is called, the dictionary in spam changes
to {'color': 'black', 'age': 5, 'name': 'Pooka'}. The method returns the
value 'black' because this is now the value set for the key 'color'. When
spam.setdefault('color', 'white') is called next, the value for that key is
not changed to 'white', because spam already has a key named 'color'.

The setdefault() method is a nice shortcut to ensure that a key exists.
Here is a short program that counts the number of occurrences of each
letter in a string. Open the file editor window and enter the following code,
saving it as characterCount.py:

message = 'It was a bright cold day in April, and the clocks were striking
thirteen.'
count = {}

for character in message:
  count.setdefault(character, 0)
  count[character] = count[character] + 1

print(count)

You can view the execution of this program at https://autbor.com/setdefault.
The program loops over each character in the message variable’s string,
counting how often each character appears. The setdefault() method
call  ensures that the key is in the count dictionary (with a default value
of 0) so the program doesn’t throw a KeyError error when count[character]
= count[character] + 1 is executed . When you run this program, the out-
put will look like this:

{' ': 13, ',': 1, '.': 1, 'A': 1, 'I': 1, 'a': 4, 'c': 3, 'b': 1, 'e': 5, 'd': 3, 'g': 2,
'i': 6, 'h': 3, 'k': 2, 'l': 3, 'o': 2, 'n': 4, 'p': 1, 's': 3, 'r': 5, 't': 6, 'w': 2, 'y': 1}

118 Chapter 5

From the output, you can see that the lowercase letter c appears 3 times,
the space character appears 13 times, and the uppercase letter A appears
1 time. This program will work no matter what string is inside the message
variable, even if the string is millions of characters long!

Pretty Printing
If you import the pprint module into your programs, you’ll have access to
the pprint() and pformat() functions that will “pretty print” a dictionary’s
values. This is helpful when you want a cleaner display of the items in a dic-
tionary than what print() provides. Modify the previous characterCount.py
program and save it as prettyCharacterCount.py.

import pprint
message = 'It was a bright cold day in April, and the clocks were striking
thirteen.'
count = {}

for character in message:
 count.setdefault(character, 0)
 count[character] = count[character] + 1

pprint.pprint(count)

You can view the execution of this program at https://autbor.com/pprint/.
This time, when the program is run, the output looks much cleaner, with
the keys sorted.

{' ': 13,
 ',': 1,
 '.': 1,
 'A': 1,
 'I': 1,
 --snip--
 't': 6,
 'w': 2,
 'y': 1}

The pprint.pprint() function is especially helpful when the dictionary
itself contains nested lists or dictionaries.

If you want to obtain the prettified text as a string value instead of dis-
playing it on the screen, call pprint.pformat() instead. These two lines are
equivalent to each other:

pprint.pprint(someDictionaryValue)
print(pprint.pformat(someDictionaryValue))

Dictionaries and Structuring Data 119

Using Data Structures to Model Real-World Things
Even before the internet, it was possible to play a game of chess with some-
one on the other side of the world. Each player would set up a chessboard at
their home and then take turns mailing a postcard to each other describing
each move. To do this, the players needed a way to unambiguously describe
the state of the board and their moves.

In algebraic chess notation, the spaces on the chessboard are identified by
a number and letter coordinate, as in Figure 5-1.

a b
1

2

3

4

5

6

7

8

c d e f g h
a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

g5

Figure 5-1: The coordinates of a chessboard in
algebraic chess notation

The chess pieces are identified by letters: K for king, Q for queen, R
for rook, B for bishop, and N for knight. Describing a move uses the let-
ter of the piece and the coordinates of its destination. A pair of these
moves describes what happens in a single turn (with white going first); for
instance, the notation 2. Nf3 Nc6 indicates that white moved a knight to f3
and black moved a knight to c6 on the second turn of the game.

There’s a bit more to algebraic notation than this, but the point is that
you can unambiguously describe a game of chess without needing to be in
front of a chessboard. Your opponent can even be on the other side of the
world! In fact, you don’t even need a physical chess set if you have a good
memory: you can just read the mailed chess moves and update boards you
have in your imagination.

Computers have good memories. A program on a modern computer can
easily store billions of strings like '2. Nf3 Nc6'. This is how computers can play
chess without having a physical chessboard. They model data to represent a
chessboard, and you can write code to work with this model.

This is where lists and dictionaries can come in. For example, the dic-
tionary {'1h': 'bking', '6c': 'wqueen', '2g': 'bbishop', '5h': 'bqueen', '3e':
'wking'} could represent the chess board in Figure 5-2.

120 Chapter 5

a b
1

2

3

4

5

6

7

8

c d e f g h
Figure 5-2: A chess board modeled by the dictionary
{'1h': 'bking', '6c': 'wqueen', '2g': 'bbishop', '5h':
'bqueen', '3e': 'wking'}

But for another example, you’ll use a game that’s a little simpler than
chess: tic-tac-toe.

A Tic-Tac-Toe Board
A tic-tac-toe board looks like a large hash symbol (#) with nine slots that
can each contain an X, an O, or a blank. To represent the board with a dic-
tionary, you can assign each slot a string-value key, as shown in Figure 5-3.

'low-L' 'low-M' 'low-R'

'mid-L' 'mid-M' 'mid-R'

'top-L' 'top-M' 'top-R'

Figure 5-3: The slots of a tic-tac-toe board
with their corresponding keys

You can use string values to represent what’s in each slot on the board:
'X', 'O', or ' ' (a space). Thus, you’ll need to store nine strings. You can use a
dictionary of values for this. The string value with the key 'top-R' can repre-
sent the top-right corner, the string value with the key 'low-L' can represent
the bottom-left corner, the string value with the key 'mid-M' can represent the
middle, and so on.

Dictionaries and Structuring Data 121

This dictionary is a data structure that represents a tic-tac-toe board.
Store this board-as-a-dictionary in a variable named theBoard. Open a
new file editor window, and enter the following source code, saving it as
ticTacToe.py:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',
 'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',
 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

The data structure stored in the theBoard variable represents the tic-tac-
toe board in Figure 5-4.

Figure 5-4: An empty tic-tac-toe board

Since the value for every key in theBoard is a single-space string, this dic-
tionary represents a completely clear board. If player X went first and chose
the middle space, you could represent that board with this dictionary:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',
 'mid-L': ' ', 'mid-M': 'X', 'mid-R': ' ',
 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

The data structure in theBoard now represents the tic-tac-toe board in
Figure 5-5.

Figure 5-5: The first move

122 Chapter 5

A board where player O has won by placing Os across the top might
look like this:

theBoard = {'top-L': 'O', 'top-M': 'O', 'top-R': 'O',
 'mid-L': 'X', 'mid-M': 'X', 'mid-R': ' ',
 'low-L': ' ', 'low-M': ' ', 'low-R': 'X'}

The data structure in theBoard now represents the tic-tac-toe board in
Figure 5-6.

Figure 5-6: Player O wins.

Of course, the player sees only what is printed to the screen, not the con-
tents of variables. Let’s create a function to print the board dictionary onto
the screen. Make the following addition to ticTacToe.py (new code is in bold):

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',
 'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',
 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}
def printBoard(board):
 print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])
 print('-+-+-')
 print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])
 print('-+-+-')
 print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])
printBoard(theBoard)

You can view the execution of this program at https://autbor.com​
/tictactoe1/. When you run this program, printBoard() will print out a
blank tic-tac-toe board.

 | |
-+-+-
 | |
-+-+-
 | |

https://autbor.com/tictactoe1
https://autbor.com/tictactoe1

Dictionaries and Structuring Data 123

The printBoard() function can handle any tic-tac-toe data structure you
pass it. Try changing the code to the following:

theBoard = {'top-L': 'O', 'top-M': 'O', 'top-R': 'O', 'mid-L': 'X', 'mid-M':
'X', 'mid-R': ' ', 'low-L': ' ', 'low-M': ' ', 'low-R': 'X'}

def printBoard(board):
 print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])
 print('-+-+-')
 print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])
 print('-+-+-')
 print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])
printBoard(theBoard)

You can view the execution of this program at https://autbor.com/tictactoe2/.
Now when you run this program, the new board will be printed to the screen.

O|O|O
-+-+-
X|X|
-+-+-
 | |X

Because you created a data structure to represent a tic-tac-toe board
and wrote code in printBoard() to interpret that data structure, you now
have a program that “models” the tic-tac-toe board. You could have orga-
nized your data structure differently (for example, using keys like 'TOP-LEFT'
instead of 'top-L'), but as long as the code works with your data structures,
you will have a correctly working program.

For example, the printBoard() function expects the tic-tac-toe data struc-
ture to be a dictionary with keys for all nine slots. If the dictionary you passed
was missing, say, the 'mid-L' key, your program would no longer work.

O|O|O
-+-+-
Traceback (most recent call last):
 File "ticTacToe.py", line 10, in <module>
 printBoard(theBoard)
 File "ticTacToe.py", line 6, in printBoard
 print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])
KeyError: 'mid-L'

Now let’s add code that allows the players to enter their moves. Modify
the ticTacToe.py program to look like this:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ', 'mid-L': ' ', 'mid-M': '
', 'mid-R': ' ', 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

def printBoard(board):
 print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])
 print('-+-+-')

124 Chapter 5

 print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])
 print('-+-+-')
 print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])
turn = 'X'
for i in range(9):

  printBoard(theBoard)
 print('Turn for ' + turn + '. Move on which space?')

  move = input()
  theBoard[move] = turn
  if turn == 'X':

 turn = 'O'
 else:
 turn = 'X'
printBoard(theBoard)

You can view the execution of this program at https://autbor.com/tictactoe3/.
The new code prints out the board at the start of each new turn , gets the
active player’s move , updates the game board accordingly , and then
swaps the active player  before moving on to the next turn.

When you run this program, it will look something like this:

 | |
-+-+-
 | |
-+-+-
 | |
Turn for X. Move on which space?
mid-M
 | |
-+-+-
 |X|
-+-+-
 | |

--snip--

O|O|X
-+-+-
X|X|O
-+-+-
O| |X
Turn for X. Move on which space?
low-M
O|O|X
-+-+-
X|X|O
-+-+-
O|X|X

This isn’t a complete tic-tac-toe game—for instance, it doesn’t ever check
whether a player has won—but it’s enough to see how data structures can be
used in programs.

Dictionaries and Structuring Data 125

N O T E 	 If you are curious, the source code for a complete tic-tac-toe program is described in the
resources available from https://nostarch.com/automatestuff2/.

Nested Dictionaries and Lists
Modeling a tic-tac-toe board was fairly simple: the board needed only a
single dictionary value with nine key-value pairs. As you model more com-
plicated things, you may find you need dictionaries and lists that contain
other dictionaries and lists. Lists are useful to contain an ordered series
of values, and dictionaries are useful for associating keys with values. For
example, here’s a program that uses a dictionary that contains other dic-
tionaries of what items guests are bringing to a picnic. The totalBrought()
function can read this data structure and calculate the total number of an
item being brought by all the guests.

allGuests = {'Alice': {'apples': 5, 'pretzels': 12},
 'Bob': {'ham sandwiches': 3, 'apples': 2},
 'Carol': {'cups': 3, 'apple pies': 1}}

def totalBrought(guests, item):
 numBrought = 0

  for k, v in guests.items():
  numBrought = numBrought + v.get(item, 0)

 return numBrought

print('Number of things being brought:')
print(' - Apples ' + str(totalBrought(allGuests, 'apples')))
print(' - Cups ' + str(totalBrought(allGuests, 'cups')))
print(' - Cakes ' + str(totalBrought(allGuests, 'cakes')))
print(' - Ham Sandwiches ' + str(totalBrought(allGuests, 'ham sandwiches')))
print(' - Apple Pies ' + str(totalBrought(allGuests, 'apple pies')))

You can view the execution of this program at https://autbor.com​
/guestpicnic/. Inside the totalBrought() function, the for loop iterates over
the key-value pairs in guests . Inside the loop, the string of the guest’s
name is assigned to k, and the dictionary of picnic items they’re bringing
is assigned to v. If the item parameter exists as a key in this dictionary, its
value (the quantity) is added to numBrought . If it does not exist as a key,
the get() method returns 0 to be added to numBrought.

The output of this program looks like this:

 Number of things being brought:
 - Apples 7
 - Cups 3
 - Cakes 0
 - Ham Sandwiches 3
 - Apple Pies 1

This may seem like such a simple thing to model that you wouldn’t
need to bother with writing a program to do it. But realize that this same
totalBrought() function could easily handle a dictionary that contains

https://autbor.com/guestpicnic
https://autbor.com/guestpicnic

126 Chapter 5

thousands of guests, each bringing thousands of different picnic items. Then
having this information in a data structure along with the totalBrought()
function would save you a lot of time!

You can model things with data structures in whatever way you like, as
long as the rest of the code in your program can work with the data model
correctly. When you first begin programming, don’t worry so much about
the “right” way to model data. As you gain more experience, you may come
up with more efficient models, but the important thing is that the data
model works for your program’s needs.

Summary
You learned all about dictionaries in this chapter. Lists and dictionaries
are values that can contain multiple values, including other lists and dic-
tionaries. Dictionaries are useful because you can map one item (the key)
to another (the value), as opposed to lists, which simply contain a series of
values in order. Values inside a dictionary are accessed using square brack-
ets just as with lists. Instead of an integer index, dictionaries can have keys
of a variety of data types: integers, floats, strings, or tuples. By organizing
a program’s values into data structures, you can create representations of
real-world objects. You saw an example of this with a tic-tac-toe board.

Practice Questions

1.	 What does the code for an empty dictionary look like?

2.	 What does a dictionary value with a key 'foo' and a value 42 look like?

3.	 What is the main difference between a dictionary and a list?

4.	 What happens if you try to access spam['foo'] if spam is {'bar': 100}?

5.	 If a dictionary is stored in spam, what is the difference between the
expressions 'cat' in spam and 'cat' in spam.keys()?

6.	 If a dictionary is stored in spam, what is the difference between the
expressions 'cat' in spam and 'cat' in spam.values()?

7.	 What is a shortcut for the following code?

if 'color' not in spam:
 spam['color'] = 'black'

8.	 What module and function can be used to “pretty print”
dictionary values?

Dictionaries and Structuring Data 127

Practice Projects
For practice, write programs to do the following tasks.

Chess Dictionary Validator
In this chapter, we used the dictionary value {'1h': 'bking', '6c': 'wqueen',
'2g': 'bbishop', '5h': 'bqueen', '3e': 'wking'} to represent a chess board.
Write a function named isValidChessBoard() that takes a dictionary argu-
ment and returns True or False depending on if the board is valid.

A valid board will have exactly one black king and exactly one white
king. Each player can only have at most 16 pieces, at most 8 pawns, and
all pieces must be on a valid space from '1a' to '8h'; that is, a piece can’t
be on space '9z'. The piece names begin with either a 'w' or 'b' to repre-
sent white or black, followed by 'pawn', 'knight', 'bishop', 'rook', 'queen', or
'king'. This function should detect when a bug has resulted in an improper
chess board.

Fantasy Game Inventory
You are creating a fantasy video game. The data structure to model the
player’s inventory will be a dictionary where the keys are string values
describing the item in the inventory and the value is an integer value
detailing how many of that item the player has. For example, the diction-
ary value {'rope': 1, 'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12}
means the player has 1 rope, 6 torches, 42 gold coins, and so on.

Write a function named displayInventory() that would take any possible
“inventory” and display it like the following:

Inventory:
12 arrow
42 gold coin
1 rope
6 torch
1 dagger
Total number of items: 62

Hint: You can use a for loop to loop through all the keys in a dictionary.

inventory.py
stuff = {'rope': 1, 'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12}

def displayInventory(inventory):
 print("Inventory:")
 item_total = 0
 for k, v in inventory.items():
 # FILL THIS PART IN
 print("Total number of items: " + str(item_total))

displayInventory(stuff)

128 Chapter 5

List to Dictionary Function for Fantasy Game Inventory
Imagine that a vanquished dragon’s loot is represented as a list of strings
like this:

dragonLoot = ['gold coin', 'dagger', 'gold coin', 'gold coin', 'ruby']

Write a function named addToInventory(inventory, addedItems), where the
inventory parameter is a dictionary representing the player’s inventory (like
in the previous project) and the addedItems parameter is a list like dragonLoot.
The addToInventory() function should return a dictionary that represents the
updated inventory. Note that the addedItems list can contain multiples of the
same item. Your code could look something like this:

def addToInventory(inventory, addedItems):
 # your code goes here

inv = {'gold coin': 42, 'rope': 1}
dragonLoot = ['gold coin', 'dagger', 'gold coin', 'gold coin', 'ruby']
inv = addToInventory(inv, dragonLoot)
displayInventory(inv)

The previous program (with your displayInventory() function from the
previous project) would output the following:

Inventory:
45 gold coin
1 rope
1 ruby
1 dagger

Total number of items: 48

6
M A N I P U L A T I N G S T R I N G S

Text is one of the most common forms
of data your programs will handle. You

already know how to concatenate two string
values together with the + operator, but you

can do much more than that. You can extract partial
strings from string values, add or remove spacing, con-
vert letters to lowercase or uppercase, and check that
strings are formatted correctly. You can even write
Python code to access the clipboard for copying and
pasting text.

130 Chapter 6

In this chapter, you’ll learn all this and more. Then you’ll work through
two different programming projects: a simple clipboard that stores multiple
strings of text and a program to automate the boring chore of formatting
pieces of text.

Working with Strings
Let’s look at some of the ways Python lets you write, print, and access strings
in your code.

String Literals
Typing string values in Python code is fairly straightforward: they begin and
end with a single quote. But then how can you use a quote inside a string?
Typing 'That is Alice's cat.' won’t work, because Python thinks the string
ends after Alice, and the rest (s cat.') is invalid Python code. Fortunately,
there are multiple ways to type strings.

Double Quotes

Strings can begin and end with double quotes, just as they do with single
quotes. One benefit of using double quotes is that the string can have a
single quote character in it. Enter the following into the interactive shell:

>>> spam = "That is Alice's cat."

Since the string begins with a double quote, Python knows that the
single quote is part of the string and not marking the end of the string.
However, if you need to use both single quotes and double quotes in the
string, you’ll need to use escape characters.

Escape Characters

An escape character lets you use characters that are otherwise impossible to
put into a string. An escape character consists of a backslash (\) followed
by the character you want to add to the string. (Despite consisting of two
characters, it is commonly referred to as a singular escape character.) For
example, the escape character for a single quote is \'. You can use this
inside a string that begins and ends with single quotes. To see how escape
characters work, enter the following into the interactive shell:

>>> spam = 'Say hi to Bob\'s mother.'

Python knows that since the single quote in Bob\'s has a backslash, it is not
a single quote meant to end the string value. The escape characters \' and \"
let you put single quotes and double quotes inside your strings, respectively.

Table 6-1 lists the escape characters you can use.

Manipulating Strings 131

Table 6-1: Escape Characters

Escape character Prints as

\' Single quote
\" Double quote
\t Tab
\n Newline (line break)
\\ Backslash

Enter the following into the interactive shell:

>>> print("Hello there!\nHow are you?\nI\'m doing fine.")
Hello there!
How are you?
I'm doing fine.

Raw Strings

You can place an r before the beginning quotation mark of a string to
make it a raw string. A raw string completely ignores all escape characters
and prints any backslash that appears in the string. For example, enter the
following into the interactive shell:

>>> print(r'That is Carol\'s cat.')
That is Carol\'s cat.

Because this is a raw string, Python considers the backslash as part of
the string and not as the start of an escape character. Raw strings are help-
ful if you are typing string values that contain many backslashes, such as
the strings used for Windows file paths like r'C:\Users\Al\Desktop' or regular
expressions described in the next chapter.

Multiline Strings with Triple Quotes

While you can use the \n escape character to put a newline into a string,
it is often easier to use multiline strings. A multiline string in Python
begins and ends with either three single quotes or three double quotes.
Any quotes, tabs, or newlines in between the “triple quotes” are considered
part of the string. Python’s indentation rules for blocks do not apply to lines
inside a multiline string.

Open the file editor and write the following:

print('''Dear Alice,

Eve's cat has been arrested for catnapping, cat burglary, and extortion.

Sincerely,
Bob''')

132 Chapter 6

Save this program as catnapping.py and run it. The output will look
like this:

Dear Alice,

Eve's cat has been arrested for catnapping, cat burglary, and extortion.

Sincerely,
Bob

Notice that the single quote character in Eve's does not need to be
escaped. Escaping single and double quotes is optional in multiline strings.
The following print() call would print identical text but doesn’t use a multi-
line string:

print('Dear Alice,\n\nEve\'s cat has been arrested for catnapping, cat
burglary, and extortion.\n\nSincerely,\nBob')

Multiline Comments

While the hash character (#) marks the beginning of a comment for the
rest of the line, a multiline string is often used for comments that span
multiple lines. The following is perfectly valid Python code:

"""This is a test Python program.
Written by Al Sweigart al@inventwithpython.com

This program was designed for Python 3, not Python 2.
"""

def spam():
 """This is a multiline comment to help
 explain what the spam() function does."""
 print('Hello!')

Indexing and Slicing Strings
Strings use indexes and slices the same way lists do. You can think of the
string 'Hello, world!' as a list and each character in the string as an item
with a corresponding index.

' H e l l o , w o r l d ! '

0 1 2 3 4 5 6 7 8 9 10 11 12

The space and exclamation point are included in the character count,
so 'Hello, world!' is 13 characters long, from H at index 0 to ! at index 12.

Manipulating Strings 133

Enter the following into the interactive shell:

>>> spam = 'Hello, world!'
>>> spam[0]
'H'
>>> spam[4]
'o'
>>> spam[-1]
'!'
>>> spam[0:5]
'Hello'
>>> spam[:5]
'Hello'
>>> spam[7:]
'world!'

If you specify an index, you’ll get the character at that position in the
string. If you specify a range from one index to another, the starting index
is included and the ending index is not. That’s why, if spam is 'Hello, world!',
spam[0:5] is 'Hello'. The substring you get from spam[0:5] will include every-
thing from spam[0] to spam[4], leaving out the comma at index 5 and the space
at index 6. This is similar to how range(5) will cause a for loop to ​iterate up
to, but not including, 5.

Note that slicing a string does not modify the original string. You can
capture a slice from one variable in a separate variable. Try entering the
following into the interactive shell:

>>> spam = 'Hello, world!'
>>> fizz = spam[0:5]
>>> fizz
'Hello'

By slicing and storing the resulting substring in another variable, you can
have both the whole string and the substring handy for quick, easy access.

The in and not in Operators with Strings
The in and not in operators can be used with strings just like with list values.
An expression with two strings joined using in or not in will evaluate to a
Boolean True or False. Enter the following into the interactive shell:

>>> 'Hello' in 'Hello, World'
True
>>> 'Hello' in 'Hello'
True
>>> 'HELLO' in 'Hello, World'
False
>>> '' in 'spam'
True
>>> 'cats' not in 'cats and dogs'
False

134 Chapter 6

These expressions test whether the first string (the exact string, case-
sensitive) can be found within the second string.

Putting Strings Inside Other Strings
Putting strings inside other strings is a common operation in program-
ming. So far, we’ve been using the + operator and string concatenation to
do this:

>>> name = 'Al'
>>> age = 4000
>>> 'Hello, my name is ' + name + '. I am ' + str(age) + ' years old.'
'Hello, my name is Al. I am 4000 years old.'

However, this requires a lot of tedious typing. A simpler approach is to
use string interpolation, in which the %s operator inside the string acts as a
marker to be replaced by values following the string. One benefit of string
interpolation is that str() doesn’t have to be called to convert values to
strings. Enter the following into the interactive shell:

>>> name = 'Al'
>>> age = 4000
>>> 'My name is %s. I am %s years old.' % (name, age)
'My name is Al. I am 4000 years old.'

Python 3.6 introduced f-strings, which is similar to string interpola-
tion except that braces are used instead of %s, with the expressions placed
directly inside the braces. Like raw strings, f-strings have an f prefix before
the starting quotation mark. Enter the following into the interactive shell:

>>> name = 'Al'
>>> age = 4000
>>> f'My name is {name}. Next year I will be {age + 1}.'
'My name is Al. Next year I will be 4001.'

Remember to include the f prefix; otherwise, the braces and their con-
tents will be a part of the string value:

>>> 'My name is {name}. Next year I will be {age + 1}.'
'My name is {name}. Next year I will be {age + 1}.'

Useful String Methods
Several string methods analyze strings or create transformed string values.
This section describes the methods you’ll be using most often.

Manipulating Strings 135

The upper(), lower(), isupper(), and islower() Methods
The upper() and lower() string methods return a new string where all the
letters in the original string have been converted to uppercase or lowercase,
respectively. Nonletter characters in the string remain unchanged. Enter
the following into the interactive shell:

>>> spam = 'Hello, world!'
>>> spam = spam.upper()
>>> spam
'HELLO, WORLD!'
>>> spam = spam.lower()
>>> spam
'hello, world!'

Note that these methods do not change the string itself but return
new string values. If you want to change the original string, you have to
call upper() or lower() on the string and then assign the new string to the
variable where the original was stored. This is why you must use spam =
spam.upper() to change the string in spam instead of simply spam.upper().
(This is just like if a variable eggs contains the value 10. Writing eggs + 3
does not change the value of eggs, but eggs = eggs + 3 does.)

The upper() and lower() methods are helpful if you need to make a case-
insensitive comparison. For example, the strings 'great' and 'GREat' are not
equal to each other. But in the following small program, it does not matter
whether the user types Great, GREAT, or grEAT, because the string is first con-
verted to lowercase.

print('How are you?')
feeling = input()
if feeling.lower() == 'great':
 print('I feel great too.')
else:
 print('I hope the rest of your day is good.')

When you run this program, the question is displayed, and entering a
variation on great, such as GREat, will still give the output I feel great too.
Adding code to your program to handle variations or mistakes in user
input, such as inconsistent capitalization, will make your programs easier
to use and less likely to fail.

How are you?
GREat
I feel great too.

You can view the execution of this program at https://autbor.com​
/convertlowercase/. The isupper() and islower() methods will return a
Boolean True value if the string has at least one letter and all the letters

https://autbor.com/convertlowercase/
https://autbor.com/convertlowercase/

136 Chapter 6

are uppercase or lowercase, respectively. Otherwise, the method returns
False. Enter the following into the interactive shell, and notice what each
method call returns:

>>> spam = 'Hello, world!'
>>> spam.islower()
False
>>> spam.isupper()
False
>>> 'HELLO'.isupper()
True
>>> 'abc12345'.islower()
True
>>> '12345'.islower()
False
>>> '12345'.isupper()
False

Since the upper() and lower() string methods themselves return strings,
you can call string methods on those returned string values as well. Expressions
that do this will look like a chain of method calls. Enter the following into the
interactive shell:

>>> 'Hello'.upper()
'HELLO'
>>> 'Hello'.upper().lower()
'hello'
>>> 'Hello'.upper().lower().upper()
'HELLO'
>>> 'HELLO'.lower()
'hello'
>>> 'HELLO'.lower().islower()
True

The isX() Methods
Along with islower() and isupper(), there are several other string methods
that have names beginning with the word is. These methods return a
Boolean value that describes the nature of the string. Here are some
common isX string methods:

isalpha()  Returns True if the string consists only of letters and isn’t blank

isalnum()  Returns True if the string consists only of letters and numbers
and is not blank

isdecimal()  Returns True if the string consists only of numeric characters
and is not blank

isspace()  Returns True if the string consists only of spaces, tabs, and
newlines and is not blank

istitle()  Returns True if the string consists only of words that begin
with an uppercase letter followed by only lowercase letters

Manipulating Strings 137

Enter the following into the interactive shell:

>>> 'hello'.isalpha()
True
>>> 'hello123'.isalpha()
False
>>> 'hello123'.isalnum()
True
>>> 'hello'.isalnum()
True
>>> '123'.isdecimal()
True
>>> ' '.isspace()
True
>>> 'This Is Title Case'.istitle()
True
>>> 'This Is Title Case 123'.istitle()
True
>>> 'This Is not Title Case'.istitle()
False
>>> 'This Is NOT Title Case Either'.istitle()
False

The isX() string methods are helpful when you need to validate user
input. For example, the following program repeatedly asks users for their
age and a password until they provide valid input. Open a new file editor
window and enter this program, saving it as validateInput.py:

while True:
 print('Enter your age:')
 age = input()
 if age.isdecimal():
 break
 print('Please enter a number for your age.')

while True:
 print('Select a new password (letters and numbers only):')
 password = input()
 if password.isalnum():
 break
 print('Passwords can only have letters and numbers.')

In the first while loop, we ask the user for their age and store their
input in age. If age is a valid (decimal) value, we break out of this first while
loop and move on to the second, which asks for a password. Otherwise, we
inform the user that they need to enter a number and again ask them to
enter their age. In the second while loop, we ask for a password, store the
user’s input in password, and break out of the loop if the input was alpha
numeric. If it wasn’t, we’re not satisfied, so we tell the user the password
needs to be alphanumeric and again ask them to enter a password.

138 Chapter 6

When run, the program’s output looks like this:

Enter your age:
forty two
Please enter a number for your age.
Enter your age:
42
Select a new password (letters and numbers only):
secr3t!
Passwords can only have letters and numbers.
Select a new password (letters and numbers only):
secr3t

You can view the execution of this program at https://autbor.com​
/validateinput/. Calling isdecimal() and isalnum() on variables, we’re able
to test whether the values stored in those variables are decimal or not,
alphanumeric or not. Here, these tests help us reject the input forty two
but accept 42, and reject secr3t! but accept secr3t.

The startswith() and endswith() Methods
The startswith() and endswith() methods return True if the string value
they are called on begins or ends (respectively) with the string passed
to the method; otherwise, they return False. Enter the following into the
interactive shell:

>>> 'Hello, world!'.startswith('Hello')
True
>>> 'Hello, world!'.endswith('world!')
True
>>> 'abc123'.startswith('abcdef')
False
>>> 'abc123'.endswith('12')
False
>>> 'Hello, world!'.startswith('Hello, world!')
True
>>> 'Hello, world!'.endswith('Hello, world!')
True

These methods are useful alternatives to the == equals operator if you
need to check only whether the first or last part of the string, rather than
the whole thing, is equal to another string.

The join() and split() Methods
The join() method is useful when you have a list of strings that need to be
joined together into a single string value. The join() method is called on a
string, gets passed a list of strings, and returns a string. The returned string

https://autbor.com/validateinput/
https://autbor.com/validateinput/

Manipulating Strings 139

is the concatenation of each string in the passed-in list. For example, enter
the following into the interactive shell:

>>> ', '.join(['cats', 'rats', 'bats'])
'cats, rats, bats'
>>> ' '.join(['My', 'name', 'is', 'Simon'])
'My name is Simon'
>>> 'ABC'.join(['My', 'name', 'is', 'Simon'])
'MyABCnameABCisABCSimon'

Notice that the string join() calls on is inserted between each string of
the list argument. For example, when join(['cats', 'rats', 'bats']) is called
on the ', ' string, the returned string is 'cats, rats, bats'.

Remember that join() is called on a string value and is passed a list
value. (It’s easy to accidentally call it the other way around.) The split()
method does the opposite: It’s called on a string value and returns a list of
strings. Enter the following into the interactive shell:

>>> 'My name is Simon'.split()
['My', 'name', 'is', 'Simon']

By default, the string 'My name is Simon' is split wherever whitespace
characters such as the space, tab, or newline characters are found. These
whitespace characters are not included in the strings in the returned list. You
can pass a delimiter string to the split() method to specify a different string
to split upon. For example, enter the following into the interactive shell:

>>> 'MyABCnameABCisABCSimon'.split('ABC')
['My', 'name', 'is', 'Simon']
>>> 'My name is Simon'.split('m')
['My na', 'e is Si', 'on']

A common use of split() is to split a multiline string along the newline
characters. Enter the following into the interactive shell:

>>> spam = '''Dear Alice,
How have you been? I am fine.
There is a container in the fridge
that is labeled "Milk Experiment."

Please do not drink it.
Sincerely,
Bob'''
>>> spam.split('\n')
['Dear Alice,', 'How have you been? I am fine.', 'There is a container in the
fridge', 'that is labeled "Milk Experiment."', '', 'Please do not drink it.',
'Sincerely,', 'Bob']

Passing split() the argument '\n' lets us split the multiline string stored
in spam along the newlines and return a list in which each item corresponds
to one line of the string.

140 Chapter 6

Splitting Strings with the partition() Method
The partition() string method can split a string into the text before and
after a separator string. This method searches the string it is called on for
the separator string it is passed, and returns a tuple of three substrings
for the “before,” “separator,” and “after” substrings. Enter the following
into the interactive shell:

>>> 'Hello, world!'.partition('w')
('Hello, ', 'w', 'orld!')
>>> 'Hello, world!'.partition('world')
('Hello, ', 'world', '!')

If the separator string you pass to partition() occurs multiple times in
the string that partition() calls on, the method splits the string only on the
first occurrence:

>>> 'Hello, world!'.partition('o')
('Hell', 'o', ', world!')

If the separator string can’t be found, the first string returned in the
tuple will be the entire string, and the other two strings will be empty:

>>> 'Hello, world!'.partition('XYZ')
('Hello, world!', '', '')

You can use the multiple assignment trick to assign the three returned
strings to three variables:

>>> before, sep, after = 'Hello, world!'.partition(' ')
>>> before
'Hello,'
>>> after
'world!'

The partition() method is useful for splitting a string whenever you
need the parts before, including, and after a particular separator string.

Justifying Text with the rjust(), ljust(), and center() Methods
The rjust() and ljust() string methods return a padded version of the
string they are called on, with spaces inserted to justify the text. The first
argument to both methods is an integer length for the justified string.
Enter the following into the interactive shell:

>>> 'Hello'.rjust(10)
' Hello'
>>> 'Hello'.rjust(20)
' Hello'
>>> 'Hello, World'.rjust(20)

Manipulating Strings 141

' Hello, World'
>>> 'Hello'.ljust(10)
'Hello '

'Hello'.rjust(10) says that we want to right-justify 'Hello' in a string of
total length 10. 'Hello' is five characters, so five spaces will be added to its
left, giving us a string of 10 characters with 'Hello' justified right.

An optional second argument to rjust() and ljust() will specify a
fill character other than a space character. Enter the following into the
interactive shell:

>>> 'Hello'.rjust(20, '*')
'***************Hello'
>>> 'Hello'.ljust(20, '-')
'Hello---------------'

The center() string method works like ljust() and rjust() but centers
the text rather than justifying it to the left or right. Enter the following
into the interactive shell:

>>> 'Hello'.center(20)
' Hello '
>>> 'Hello'.center(20, '=')
'=======Hello========'

These methods are especially useful when you need to print tabular
data that has correct spacing. Open a new file editor window and enter the
following code, saving it as picnicTable.py:

def printPicnic(itemsDict, leftWidth, rightWidth):
 print('PICNIC ITEMS'.center(leftWidth + rightWidth, '-'))
 for k, v in itemsDict.items():
 print(k.ljust(leftWidth, '.') + str(v).rjust(rightWidth))

picnicItems = {'sandwiches': 4, 'apples': 12, 'cups': 4, 'cookies': 8000}
printPicnic(picnicItems, 12, 5)
printPicnic(picnicItems, 20, 6)

You can view the execution of this program at https://autbor.com​
/picnictable/. In this program, we define a printPicnic() method that will
take in a dictionary of information and use center(), ljust(), and rjust()
to display that information in a neatly aligned table-like format.

The dictionary that we’ll pass to printPicnic() is picnicItems. In
picnicItems, we have 4 sandwiches, 12 apples, 4 cups, and 8,000 cookies.
We want to organize this information into two columns, with the name
of the item on the left and the quantity on the right.

To do this, we decide how wide we want the left and right columns
to be. Along with our dictionary, we’ll pass these values to printPicnic().

https://autbor.com/picnictable/
https://autbor.com/picnictable/

142 Chapter 6

The printPicnic() function takes in a dictionary, a leftWidth for the left
column of a table, and a rightWidth for the right column. It prints a title,
PICNIC ITEMS, centered above the table. Then, it loops through the diction-
ary, printing each key-value pair on a line with the key justified left and
padded by periods, and the value justified right and padded by spaces.

After defining printPicnic(), we define the dictionary picnicItems and
call printPicnic() twice, passing it different widths for the left and right
table columns.

When you run this program, the picnic items are displayed twice. The
first time the left column is 12 characters wide, and the right column is 5 char-
acters wide. The second time they are 20 and 6 characters wide, respectively.

---PICNIC ITEMS--
sandwiches.. 4
apples...... 12
cups........ 4
cookies..... 8000
-------PICNIC ITEMS-------
sandwiches.......... 4
apples.............. 12
cups................ 4
cookies............. 8000

Using rjust(), ljust(), and center() lets you ensure that strings are
neatly aligned, even if you aren’t sure how many characters long your
strings are.

Removing Whitespace with the strip(), rstrip(), and lstrip() Methods
Sometimes you may want to strip off whitespace characters (space, tab, and
newline) from the left side, right side, or both sides of a string. The strip()
string method will return a new string without any whitespace characters
at the beginning or end. The lstrip() and rstrip() methods will remove
whitespace characters from the left and right ends, respectively. Enter the
following into the interactive shell:

>>> spam = ' Hello, World '
>>> spam.strip()
'Hello, World'
>>> spam.lstrip()
'Hello, World '
>>> spam.rstrip()
' Hello, World'

Optionally, a string argument will specify which characters on the ends
should be stripped. Enter the following into the interactive shell:

>>> spam = 'SpamSpamBaconSpamEggsSpamSpam'
>>> spam.strip('ampS')
'BaconSpamEggs'

Manipulating Strings 143

Passing strip() the argument 'ampS' will tell it to strip occurrences of
a, m, p, and capital S from the ends of the string stored in spam. The order of
the characters in the string passed to strip() does not matter: strip('ampS')
will do the same thing as strip('mapS') or strip('Spam').

Numeric Values of Characters with the ord() and chr() Functions
Computers store information as bytes—strings of binary numbers, which
means we need to be able to convert text to numbers. Because of this, every
text character has a corresponding numeric value called a Unicode code point.
For example, the numeric code point is 65 for 'A', 52 for '4', and 33 for '!'.
You can use the ord() function to get the code point of a one-character
string, and the chr() function to get the one-character string of an integer
code point. Enter the following into the interactive shell:

>>> ord('A')
65
>>> ord('4')
52
>>> ord('!')
33
>>> chr(65)
'A'

These functions are useful when you need to do an ordering or math-
ematical operation on characters:

>>> ord('B')
66
>>> ord('A') < ord('B')
True
>>> chr(ord('A'))
'A'
>>> chr(ord('A') + 1)
'B'

There is more to Unicode and code points, but those details are beyond
the scope of this book. If you’d like to know more, I recommend watching
Ned Batchelder’s 2012 PyCon talk, “Pragmatic Unicode, or, How Do I Stop
the Pain?” at https://youtu.be/sgHbC6udIqc.

Copying and Pasting Strings with the pyperclip Module
The pyperclip module has copy() and paste() functions that can send text
to and receive text from your computer’s clipboard. Sending the output of
your program to the clipboard will make it easy to paste it into an email,
word processor, or some other software.

144 Chapter 6

The pyperclip module does not come with Python. To install it, follow
the directions for installing third-party modules in Appendix A. After
installing pyperclip, enter the following into the interactive shell:

>>> import pyperclip
>>> pyperclip.copy('Hello, world!')
>>> pyperclip.paste()
'Hello, world!'

Of course, if something outside of your program changes the clipboard
contents, the paste() function will return it. For example, if I copied this
sentence to the clipboard and then called paste(), it would look like this:

>>> pyperclip.paste()
'For example, if I copied this sentence to the clipboard and then called
paste(), it would look like this:'

Project: Multi-Clipboard Automatic Messages
If you’ve responded to a large number of emails with similar phrasing,
you’ve probably had to do a lot of repetitive typing. Maybe you keep a text
document with these phrases so you can easily copy and paste them using
the clipboard. But your clipboard can only store one message at a time,
which isn’t very convenient. Let’s make this process a bit easier with a pro-
gram that stores multiple phrases.

Step 1: Program Design and Data Structures
You want to be able to run this program with a command line argument
that is a short key phrase—for instance, agree or busy. The message associ-
ated with that key phrase will be copied to the clipboard so that the user
can paste it into an email. This way, the user can have long, detailed mes-
sages without having to retype them.

RUNNING PY T HON SCR IP T S OU T SIDE OF MU

So far, you’ve been running your Python scripts using the interactive shell and
file editor in Mu. However, you won’t want to go through the inconvenience of
opening Mu and the Python script each time you want to run a script. Fortunately,
there are shortcuts you can set up to make running Python scripts easier. The steps
are slightly different for Windows, macOS, and Linux, but each is described in
Appendix B. Turn to Appendix B to learn how to run your Python scripts conve-
niently and be able to pass command line arguments to them. (You will not be
able to pass command line arguments to your programs using Mu.)

Manipulating Strings 145

Open a new file editor window and save the program as mclip.py. You
need to start the program with a #! (shebang) line (see Appendix B) and
should also write a comment that briefly describes the program. Since you
want to associate each piece of text with its key phrase, you can store these
as strings in a dictionary. The dictionary will be the data structure that orga-
nizes your key phrases and text. Make your program look like the following:

#! python3
mclip.py - A multi-clipboard program.

TEXT = {'agree': """Yes, I agree. That sounds fine to me.""",
 'busy': """Sorry, can we do this later this week or next week?""",
 'upsell': """Would you consider making this a monthly donation?"""}

Step 2: Handle Command Line Arguments
The command line arguments will be stored in the variable sys.argv. (See
Appendix B for more information on how to use command line arguments
in your programs.) The first item in the sys.argv list should always be a string
containing the program’s filename ('mclip.py'), and the second item should
be the first command line argument. For this program, this argument is the
key phrase of the message you want. Since the command line argument is
mandatory, you display a usage message to the user if they forget to add it
(that is, if the sys.argv list has fewer than two values in it). Make your pro-
gram look like the following:

#! python3
mclip.py - A multi-clipboard program.

TEXT = {'agree': """Yes, I agree. That sounds fine to me.""",
 'busy': """Sorry, can we do this later this week or next week?""",
 'upsell': """Would you consider making this a monthly donation?"""}

import sys
if len(sys.argv) < 2:
 print('Usage: python mclip.py [keyphrase] - copy phrase text')
 sys.exit()

keyphrase = sys.argv[1] # first command line arg is the keyphrase

T HE CH A P T E R PROJEC T S

This is the first “chapter project” of the book. From here on, each chapter will
have projects that demonstrate the concepts covered in the chapter. The proj-
ects are written in a style that takes you from a blank file editor window to a
full, working program. Just like with the interactive shell examples, don’t only
read the project sections—follow along on your computer!

146 Chapter 6

Step 3: Copy the Right Phrase
Now that the key phrase is stored as a string in the variable keyphrase, you
need to see whether it exists in the TEXT dictionary as a key. If so, you want
to copy the key’s value to the clipboard using pyperclip.copy(). (Since you’re
using the pyperclip module, you need to import it.) Note that you don’t
actually need the keyphrase variable; you could just use sys.argv[1] every-
where keyphrase is used in this program. But a variable named keyphrase is
much more readable than something cryptic like sys.argv[1].

Make your program look like the following:

#! python3
mclip.py - A multi-clipboard program.

TEXT = {'agree': """Yes, I agree. That sounds fine to me.""",
 'busy': """Sorry, can we do this later this week or next week?""",
 'upsell': """Would you consider making this a monthly donation?"""}

import sys, pyperclip
if len(sys.argv) < 2:
 print('Usage: py mclip.py [keyphrase] - copy phrase text')
 sys.exit()

keyphrase = sys.argv[1] # first command line arg is the keyphrase

if keyphrase in TEXT:
 pyperclip.copy(TEXT[keyphrase])
 print('Text for ' + keyphrase + ' copied to clipboard.')
else:
 print('There is no text for ' + keyphrase)

This new code looks in the TEXT dictionary for the key phrase. If the key
phrase is a key in the dictionary, we get the value corresponding to that key,
copy it to the clipboard, and print a message saying that we copied the value.
Otherwise, we print a message saying there’s no key phrase with that name.

That’s the complete script. Using the instructions in Appendix B for
launching command line programs easily, you now have a fast way to copy
messages to the clipboard. You will have to modify the TEXT dictionary value
in the source whenever you want to update the program with a new message.

On Windows, you can create a batch file to run this program with
the win-R Run window. (For more about batch files, see Appendix B.)
Enter the following into the file editor and save the file as mclip.bat in the
C:\Windows folder:

@py.exe C:\path_to_file\mclip.py %*
@pause

With this batch file created, running the multi-clipboard program on
Windows is just a matter of pressing win-R and typing mclip key phrase.

Manipulating Strings 147

Project: Adding Bullets to Wiki Markup
When editing a Wikipedia article, you can create a bulleted list by putting
each list item on its own line and placing a star in front. But say you have
a really large list that you want to add bullet points to. You could just type
those stars at the beginning of each line, one by one. Or you could auto-
mate this task with a short Python script.

The bulletPointAdder.py script will get the text from the clipboard, add a
star and space to the beginning of each line, and then paste this new text to
the clipboard. For example, if I copied the following text (for the Wikipedia
article “List of Lists of Lists”) to the clipboard:

Lists of animals
Lists of aquarium life
Lists of biologists by author abbreviation
Lists of cultivars

and then ran the bulletPointAdder.py program, the clipboard would then
contain the following:

* Lists of animals
* Lists of aquarium life
* Lists of biologists by author abbreviation
* Lists of cultivars

This star-prefixed text is ready to be pasted into a Wikipedia article as
a bulleted list.

Step 1: Copy and Paste from the Clipboard
You want the bulletPointAdder.py program to do the following:

1.	 Paste text from the clipboard.

2.	 Do something to it.

3.	 Copy the new text to the clipboard.

That second step is a little tricky, but steps 1 and 3 are pretty straight-
forward: they just involve the pyperclip.copy() and pyperclip.paste() func-
tions. For now, let’s just write the part of the program that covers steps 1
and 3. Enter the following, saving the program as bulletPointAdder.py:

#! python3
bulletPointAdder.py - Adds Wikipedia bullet points to the start
of each line of text on the clipboard.

import pyperclip
text = pyperclip.paste()

TODO: Separate lines and add stars.

pyperclip.copy(text)

148 Chapter 6

The TODO comment is a reminder that you should complete this part of
the program eventually. The next step is to actually implement that piece
of the program.

Step 2: Separate the Lines of Text and Add the Star
The call to pyperclip.paste() returns all the text on the clipboard as one big
string. If we used the “List of Lists of Lists” example, the string stored in
text would look like this:

'Lists of animals\nLists of aquarium life\nLists of biologists by author
abbreviation\nLists of cultivars'

The \n newline characters in this string cause it to be displayed with
multiple lines when it is printed or pasted from the clipboard. There are
many “lines” in this one string value. You want to add a star to the start of
each of these lines.

You could write code that searches for each \n newline character in the
string and then adds the star just after that. But it would be easier to use the
split() method to return a list of strings, one for each line in the original
string, and then add the star to the front of each string in the list.

Make your program look like the following:

#! python3
bulletPointAdder.py - Adds Wikipedia bullet points to the start
of each line of text on the clipboard.

import pyperclip
text = pyperclip.paste()

Separate lines and add stars.
lines = text.split('\n')
for i in range(len(lines)): # loop through all indexes in the "lines" list
 lines[i] = '* ' + lines[i] # add star to each string in "lines" list

pyperclip.copy(text)

We split the text along its newlines to get a list in which each item is one
line of the text. We store the list in lines and then loop through the items in
lines. For each line, we add a star and a space to the start of the line. Now
each string in lines begins with a star.

Step 3: Join the Modified Lines
The lines list now contains modified lines that start with stars. But pyperclip​
.copy() is expecting a single string value, however, not a list of string values. To
make this single string value, pass lines into the join() method to get a single
string joined from the list’s strings. Make your program look like the following:

#! python3
bulletPointAdder.py - Adds Wikipedia bullet points to the start

Manipulating Strings 149

of each line of text on the clipboard.

import pyperclip
text = pyperclip.paste()

Separate lines and add stars.
lines = text.split('\n')
for i in range(len(lines)): # loop through all indexes for "lines" list
 lines[i] = '* ' + lines[i] # add star to each string in "lines" list
text = '\n'.join(lines)
pyperclip.copy(text)

When this program is run, it replaces the text on the clipboard with
text that has stars at the start of each line. Now the program is complete,
and you can try running it with text copied to the clipboard.

Even if you don’t need to automate this specific task, you might want to
automate some other kind of text manipulation, such as removing trailing
spaces from the end of lines or converting text to uppercase or lowercase.
Whatever your needs, you can use the clipboard for input and output.

A Short Progam: Pig Latin
Pig Latin is a silly made-up language that alters English words. If a word
begins with a vowel, the word yay is added to the end of it. If a word begins
with a consonant or consonant cluster (like ch or gr), that consonant or clus-
ter is moved to the end of the word followed by ay.

Let’s write a Pig Latin program that will output something like this:

Enter the English message to translate into Pig Latin:
My name is AL SWEIGART and I am 4,000 years old.
Ymay amenay isyay ALYAY EIGARTSWAY andyay Iyay amyay 4,000 yearsyay oldyay.

This program works by altering a string using the methods introduced
in this chapter. Type the following source code into the file editor, and save
the file as pigLat.py:

English to Pig Latin
print('Enter the English message to translate into Pig Latin:')
message = input()

VOWELS = ('a', 'e', 'i', 'o', 'u', 'y')

pigLatin = [] # A list of the words in Pig Latin.
for word in message.split():
 # Separate the non-letters at the start of this word:
 prefixNonLetters = ''
 while len(word) > 0 and not word[0].isalpha():
 prefixNonLetters += word[0]
 word = word[1:]

150 Chapter 6

 if len(word) == 0:
 pigLatin.append(prefixNonLetters)
 continue

 # Separate the non-letters at the end of this word:
 suffixNonLetters = ''
 while not word[-1].isalpha():
 suffixNonLetters += word[-1]
 word = word[:-1]

 # Remember if the word was in uppercase or title case.
 wasUpper = word.isupper()
 wasTitle = word.istitle()

 word = word.lower() # Make the word lowercase for translation.

 # Separate the consonants at the start of this word:
 prefixConsonants = ''
 while len(word) > 0 and not word[0] in VOWELS:
 prefixConsonants += word[0]
 word = word[1:]

 # Add the Pig Latin ending to the word:
 if prefixConsonants != '':
 word += prefixConsonants + 'ay'
 else:
 word += 'yay'

 # Set the word back to uppercase or title case:
 if wasUpper:
 word = word.upper()
 if wasTitle:
 word = word.title()

 # Add the non-letters back to the start or end of the word.
 pigLatin.append(prefixNonLetters + word + suffixNonLetters)

Join all the words back together into a single string:
print(' '.join(pigLatin))

Let’s look at this code line by line, starting at the top:

English to Pig Latin
print('Enter the English message to translate into Pig Latin:')
message = input()

VOWELS = ('a', 'e', 'i', 'o', 'u', 'y')

First, we ask the user to enter the English text to translate into Pig
Latin. Also, we create a constant that holds every lowercase vowel letter
(and y) as a tuple of strings. This will be used later in our program.

Manipulating Strings 151

Next, we’re going to create the pigLatin variable to store the words as we
translate them into Pig Latin:

pigLatin = [] # A list of the words in Pig Latin.
for word in message.split():
 # Separate the non-letters at the start of this word:
 prefixNonLetters = ''
 while len(word) > 0 and not word[0].isalpha():
 prefixNonLetters += word[0]
 word = word[1:]
 if len(word) == 0:
 pigLatin.append(prefixNonLetters)
 continue

We need each word to be its own string, so we call message.split() to
get a list of the words as separate strings. The string 'My name is AL SWEIGART
and I am 4,000 years old.' would cause split() to return ['My', 'name', 'is',
'AL', 'SWEIGART', 'and', 'I', 'am', '4,000', 'years', 'old.'].

We need to remove any non-letters from the start and end of each word
so that strings like 'old.' translate to 'oldyay.' instead of 'old.yay'. We’ll
save these non-letters to a variable named prefixNonLetters.

 # Separate the non-letters at the end of this word:
 suffixNonLetters = ''
 while not word[-1].isalpha():
 suffixNonLetters += word[-1]
 word = word[:-1]

A loop that calls isalpha() on the first character in the word will deter-
mine if we should remove a character from a word and concatenate it to the
end of prefixNonLetters. If the entire word is made of non-letter characters,
like '4,000', we can simply append it to the pigLatin list and continue to the
next word to translate. We also need to save the non-letters at the end of the
word string. This code is similar to the previous loop.

Next, we’ll make sure the program remembers if the word was in upper-
case or title case so we can restore it after translating the word to Pig Latin:

 # Remember if the word was in uppercase or title case.
 wasUpper = word.isupper()
 wasTitle = word.istitle()

 word = word.lower() # Make the word lowercase for translation.

For the rest of the code in the for loop, we’ll work on a lowercase
version of word.

152 Chapter 6

To convert a word like sweigart to eigart-sway, we need to remove all of
the consonants from the beginning of word:

 # Separate the consonants at the start of this word:
 prefixConsonants = ''
 while len(word) > 0 and not word[0] in VOWELS:
 prefixConsonants += word[0]
 word = word[1:]

We use a loop similar to the loop that removed the non-letters from the
start of word, except now we are pulling off consonants and storing them to
a variable named prefixConsonants.

If there were any consonants at the start of the word, they are now in
prefixConsonants and we should concatenate that variable and the string 'ay'
to the end of word. Otherwise, we can assume word begins with a vowel and
we only need to concatenate 'yay':

 # Add the Pig Latin ending to the word:
 if prefixConsonants != '':
 word += prefixConsonants + 'ay'
 else:
 word += 'yay'

Recall that we set word to its lowercase version with word = word.lower().
If word was originally in uppercase or title case, this code will convert word
back to its original case:

 # Set the word back to uppercase or title case:
 if wasUpper:
 word = word.upper()
 if wasTitle:
 word = word.title()

At the end of the for loop, we append the word, along with any non-
letter prefix or suffix it originally had, to the pigLatin list:

 # Add the non-letters back to the start or end of the word.
 pigLatin.append(prefixNonLetters + word + suffixNonLetters)

Join all the words back together into a single string:
print(' '.join(pigLatin))

After this loop finishes, we combine the list of strings into a single
string by calling the join() method. This single string is passed to print()
to display our Pig Latin on the screen.

You can find other short, text-based Python programs like this one at
https://github.com/asweigart/pythonstdiogames/.

https://github.com/asweigart/pythonstdiogames

Manipulating Strings 153

Summary
Text is a common form of data, and Python comes with many helpful
string methods to process the text stored in string values. You will make
use of indexing, slicing, and string methods in almost every Python pro-
gram you write.

The programs you are writing now don’t seem too sophisticated—​
they don’t have graphical user interfaces with images and colorful text. So
far, you’re displaying text with print() and letting the user enter text with
input(). However, the user can quickly enter large amounts of text through
the clipboard. This ability provides a useful avenue for writing programs
that manipulate massive amounts of text. These text-based programs might
not have flashy windows or graphics, but they can get a lot of useful work
done quickly.

Another way to manipulate large amounts of text is reading and writing
files directly off the hard drive. You’ll learn how to do this with Python in
Chapter 9.

That just about covers all the basic concepts of Python programming!
You’ll continue to learn new concepts throughout the rest of this book,
but you now know enough to start writing some useful programs that can
automate tasks. If you’d like to see a collection of short, simple Python pro-
grams built from the basic concepts you’ve learned so far, check out https://
github.com/asweigart/pythonstdiogames/. Try copying the source code for each
program by hand, and then make modifications to see how they affect the
behavior of the program. Once you have an understanding of how the pro-
gram works, try re-creating the program yourself from scratch. You don’t
need to re-create the source code exactly; just focus on what the program
does rather than how it does it.

You might not think you have enough Python knowledge to do things
such as download web pages, update spreadsheets, or send text messages, but
that’s where Python modules come in! These modules, written by other pro-
grammers, provide functions that make it easy for you to do all these things.
So let’s learn how to write real programs to do useful automated tasks.

Practice Questions

1.	 What are escape characters?

2.	 What do the \n and \t escape characters represent?

3.	 How can you put a \ backslash character in a string?

4.	 The string value "Howl's Moving Castle" is a valid string. Why isn’t it a prob-
lem that the single quote character in the word Howl's isn’t escaped?

5.	 If you don’t want to put \n in your string, how can you write a string
with newlines in it?

154 Chapter 6

6.	 What do the following expressions evaluate to?

•	 'Hello, world!'[1]

•	 'Hello, world!'[0:5]

•	 'Hello, world!'[:5]

•	 'Hello, world!'[3:]

7.	 What do the following expressions evaluate to?

•	 'Hello'.upper()

•	 'Hello'.upper().isupper()

•	 'Hello'.upper().lower()

8.	 What do the following expressions evaluate to?

•	 'Remember, remember, the fifth of November.'.split()

•	 '-'.join('There can be only one.'.split())

9.	 What string methods can you use to right-justify, left-justify, and center
a string?

10.	 How can you trim whitespace characters from the beginning or end of
a string?

Practice Projects
For practice, write programs that do the following.

Table Printer
Write a function named printTable() that takes a list of lists of strings
and displays it in a well-organized table with each column right-justified.
Assume that all the inner lists will contain the same number of strings.
For example, the value could look like this:

tableData = [['apples', 'oranges', 'cherries', 'banana'],
 ['Alice', 'Bob', 'Carol', 'David'],
 ['dogs', 'cats', 'moose', 'goose']]

Your printTable() function would print the following:

 apples Alice dogs
 oranges Bob cats
 cherries Carol moose
 banana David goose

Hint: your code will first have to find the longest string in each of the
inner lists so that the whole column can be wide enough to fit all the strings.
You can store the maximum width of each column as a list of integers. The
printTable() function can begin with colWidths = [0] * len(tableData), which
will create a list containing the same number of 0 values as the number
of inner lists in tableData. That way, colWidths[0] can store the width of the

Manipulating Strings 155

longest string in tableData[0], colWidths[1] can store the width of the lon-
gest string in tableData[1], and so on. You can then find the largest value in
the colWidths list to find out what integer width to pass to the rjust() string
method.

Zombie Dice Bots
Programming games are a game genre where instead of playing a game
directly, players write bot programs to play the game autonomously. I’ve
created a Zombie Dice simulator, which allows programmers to practice
their skills while making game-playing AIs. Zombie Dice bots can be simple
or incredibly complex, and are great for a class exercise or an individual
programming challenge.

Zombie Dice is a quick, fun dice game from Steve Jackson Games. The
players are zombies trying to eat as many human brains as possible without
getting shot three times. There is a cup of 13 dice with brains, footsteps,
and shotgun icons on their faces. The dice icons are colored, and each
color has a different likelihood of each event occurring. Every die has two
sides with footsteps, but dice with green icons have more sides with brains,
red-icon dice have more shotguns, and yellow-icon dice have an even split of
brains and shotguns. Do the following on each player’s turn:

1.	 Place all 13 dice in the cup. The player randomly draws three dice from
the cup and then rolls them. Players always roll exactly three dice.

2.	 They set aside and count up any brains (humans whose brains were
eaten) and shotguns (humans who fought back). Accumulating three
shotguns automatically ends a player’s turn with zero points (regardless
of how many brains they had). If they have between zero and two shot-
guns, they may continue rolling if they want. They may also choose to
end their turn and collect one point per brain.

3.	 If the player decides to keep rolling, they must reroll all dice with
footsteps. Remember that the player must always roll three dice; they
must draw more dice out of the cup if they have fewer than three foot-
steps to roll. A player may keep rolling dice until either they get three
shotguns—losing everything—or all 13 dice have been rolled. A player
may not reroll only one or two dice, and may not stop mid-reroll.

4.	 When someone reaches 13 brains, the rest of the players finish out the
round. The person with the most brains wins. If there’s a tie, the tied
players play one last tiebreaker round.

Zombie Dice has a push-your-luck game mechanic: the more you reroll
the dice, the more brains you can get, but the more likely you’ll eventually
accrue three shotguns and lose everything. Once a player reaches 13 points,
the rest of the players get one more turn (to potentially catch up) and the
game ends. The player with the most points wins. You can find the complete
rules at https://github.com/asweigart/zombiedice/.

https://github.com/asweigart/zombiedice/

156 Chapter 6

Install the zombiedice module with pip by following the instructions in
Appendix A. You can run a demo of the simulator with some pre-made bots
by running the following in the interactive shell:

>>> import zombiedice
>>> zombiedice.demo()
Zombie Dice Visualization is running. Open your browser to http://
localhost:51810 to view it.
Press Ctrl-C to quit.

The program launches your web browser, which will look like Figure 6-1.

Figure 6-1: The web GUI for the Zombie Dice simulator

You’ll create bots by writing a class with a turn() method, which is
called by the simulator when it’s your bot’s turn to roll the dice. Classes
are beyond the scope of this book, so the class code is already set up for
you in the myzombie.py program, which is in the downloadable ZIP file for
this book at https://nostarch.com/automatestuff2/. Writing a method is essen-
tially the same as writing a function, and you can use the turn() code in the
myZombie.py program as a template. Inside this turn() method, you’ll call
the zombiedice​.roll() function as often as you want your bot to roll the dice.

import zombiedice

class MyZombie:
 def __init__(self, name):
 # All zombies must have a name:
 self.name = name

 def turn(self, gameState):

Manipulating Strings 157

 # gameState is a dict with info about the current state of the game.
 # You can choose to ignore it in your code.

 diceRollResults = zombiedice.roll() # first roll
 # roll() returns a dictionary with keys 'brains', 'shotgun', and
 # 'footsteps' with how many rolls of each type there were.
 # The 'rolls' key is a list of (color, icon) tuples with the
 # exact roll result information.
 # Example of a roll() return value:
 # {'brains': 1, 'footsteps': 1, 'shotgun': 1,
 # 'rolls': [('yellow', 'brains'), ('red', 'footsteps'),
 # ('green', 'shotgun')]}

 # REPLACE THIS ZOMBIE CODE WITH YOUR OWN:
 brains = 0
 while diceRollResults is not None:
 brains += diceRollResults['brains']

 if brains < 2:
 diceRollResults = zombiedice.roll() # roll again
 else:
 break

zombies = (
 zombiedice.examples.RandomCoinFlipZombie(name='Random'),
 zombiedice.examples.RollsUntilInTheLeadZombie(name='Until Leading'),
 zombiedice.examples.MinNumShotgunsThenStopsZombie(name='Stop at 2
Shotguns', minShotguns=2),
 zombiedice.examples.MinNumShotgunsThenStopsZombie(name='Stop at 1
Shotgun', minShotguns=1),
 MyZombie(name='My Zombie Bot'),
 # Add any other zombie players here.
)

Uncomment one of the following lines to run in CLI or Web GUI mode:
#zombiedice.runTournament(zombies=zombies, numGames=1000)
zombiedice.runWebGui(zombies=zombies, numGames=1000)

The turn() method takes two parameters: self and gameState. You can
ignore these in your first few zombie bots and consult the online documen-
tation for details later if you want to learn more. The turn() method should
call zombiedice.roll() at least once for the initial roll. Then, depending on
the strategy the bot uses, it can call zombiedice.roll() again as many times
as it wants. In myZombie.py, the turn() method calls zombiedice.roll() twice,
which means the zombie bot will always roll its dice two times per turn
regardless of the results of the roll.

The return value of zombiedice.roll() tells your code the results of
the dice roll. It is a dictionary with four keys. Three of the keys, 'shotgun',
'brains', and 'footsteps', have integer values of how many dice came up
with those icons. The fourth 'rolls' key has a value that is a list of tuples for
each die roll. The tuples contain two strings: the color of the die at index 0
and the icon rolled at index 1. Look at the code comments in the turn()

158 Chapter 6

method’s definition for an example. If the bot has already rolled three shot-
guns, then zombiedice.roll() will return None.

Try writing some of your own bots to play Zombie Dice and see how they
compare against the other bots. Specifically, try to create the following bots:

•	 A bot that, after the first roll, randomly decides if it will continue
or stop

•	 A bot that stops rolling after it has rolled two brains

•	 A bot that stops rolling after it has rolled two shotguns

•	 A bot that initially decides it’ll roll the dice one to four times, but will
stop early if it rolls two shotguns

•	 A bot that stops rolling after it has rolled more shotguns than brains

Run these bots through the simulator and see how they compare
to each other. You can also examine the code of some premade bots at
https://github.com/asweigart/zombiedice/. If you find yourself playing this game
in the real world, you’ll have the benefit of thousands of simulated games
telling you that one of the best strategies is to simply stop once you’ve rolled
two shotguns. But you could always try pressing your luck . . .

PART II
A U T O M A T I N G T A S K S

7
P A T T E R N M A T C H I N G W I T H

R E G U L A R E X P R E S S I O N S

You may be familiar with searching for text
by pressing ctrl-F and entering the words

you’re looking for. Regular expressions go one
step further: they allow you to specify a pattern of

text to search for. You may not know a business’s exact
phone number, but if you live in the United States or
Canada, you know it will be three digits, followed by a hyphen, and then
four more digits (and optionally, a three-digit area code at the start). This
is how you, as a human, know a phone number when you see it: 415-555-
1234 is a phone number, but 4,155,551,234 is not.

We also recognize all sorts of other text patterns every day: email
addresses have @ symbols in the middle, US social security numbers have
nine digits and two hyphens, website URLs often have periods and forward
slashes, news headlines use title case, social media hashtags begin with #
and contain no spaces, and more.

162 Chapter 7

Regular expressions are helpful, but few non-programmers know about
them even though most modern text editors and word processors, such as
Microsoft Word or OpenOffice, have find and find-and-replace features
that can search based on regular expressions. Regular expressions are
huge time-savers, not just for software users but also for programmers. In
fact, tech writer Cory Doctorow argues that we should be teaching regular
expressions even before programming:

Knowing [regular expressions] can mean the difference between
solving a problem in 3 steps and solving it in 3,000 steps. When
you’re a nerd, you forget that the problems you solve with a cou-
ple keystrokes can take other people days of tedious, error-prone
work to slog through.1

In this chapter, you’ll start by writing a program to find text patterns with-
out using regular expressions and then see how to use regular expressions to
make the code much less bloated. I’ll show you basic matching with regular
expressions and then move on to some more powerful features, such as string
substitution and creating your own character classes. Finally, at the end of the
chapter, you’ll write a program that can automatically extract phone numbers
and email addresses from a block of text.

Finding Patterns of Text Without Regular Expressions
Say you want to find an American phone number in a string. You know the
pattern if you’re American: three numbers, a hyphen, three numbers, a
hyphen, and four numbers. Here’s an example: 415-555-4242.

Let’s use a function named isPhoneNumber() to check whether a string
matches this pattern, returning either True or False. Open a new file editor
tab and enter the following code; then save the file as isPhoneNumber.py:

def isPhoneNumber(text):
  if len(text) != 12:

 return False
 for i in range(0, 3):

  if not text[i].isdecimal():
 return False

  if text[3] != '-':
 return False
 for i in range(4, 7):

  if not text[i].isdecimal():
 return False

  if text[7] != '-':
 return False

1. Cory Doctorow, “Here’s What ICT Should Really Teach Kids: How to Do Regular
Expressions,” Guardian, December 4, 2012, http://www.theguardian.com/technology/2012​
/dec/04/ict-teach-kids-regular-expressions/.

http://www.theguardian.com/technology/2012/dec/04/ict-teach-kids-regular-expressions/
http://www.theguardian.com/technology/2012/dec/04/ict-teach-kids-regular-expressions/

Pattern Matching with Regular Expressions 163

 for i in range(8, 12):
  if not text[i].isdecimal():

 return False
  return True

print('Is 415-555-4242 a phone number?')
print(isPhoneNumber('415-555-4242'))
print('Is Moshi moshi a phone number?')
print(isPhoneNumber('Moshi moshi'))

When this program is run, the output looks like this:

Is 415-555-4242 a phone number?
True
Is Moshi moshi a phone number?
False

The isPhoneNumber() function has code that does several checks to see
whether the string in text is a valid phone number. If any of these checks
fail, the function returns False. First the code checks that the string is
exactly 12 characters . Then it checks that the area code (that is, the
first three characters in text) consists of only numeric characters . The
rest of the function checks that the string follows the pattern of a phone
number: the number must have the first hyphen after the area code ,
three more numeric characters , then another hyphen , and finally
four more numbers . If the program execution manages to get past all
the checks, it returns True .

Calling isPhoneNumber() with the argument '415-555-4242' will return
True. Calling isPhoneNumber() with 'Moshi moshi' will return False; the first
test fails because 'Moshi moshi' is not 12 characters long.

If you wanted to find a phone number within a larger string, you would
have to add even more code to find the phone number pattern. Replace the
last four print() function calls in isPhoneNumber.py with the following:

message = 'Call me at 415-555-1011 tomorrow. 415-555-9999 is my office.'
for i in range(len(message)):

  chunk = message[i:i+12]
  if isPhoneNumber(chunk):

 print('Phone number found: ' + chunk)
print('Done')

When this program is run, the output will look like this:

Phone number found: 415-555-1011
Phone number found: 415-555-9999
Done

164 Chapter 7

On each iteration of the for loop, a new chunk of 12 characters from
message is assigned to the variable chunk . For example, on the first itera-
tion, i is 0, and chunk is assigned message[0:12] (that is, the string 'Call me
at 4'). On the next iteration, i is 1, and chunk is assigned message[1:13]
(the string 'all me at 41'). In other words, on each iteration of the for
loop, chunk takes on the following values:

•	 'Call me at 4'

•	 'all me at 41'

•	 'll me at 415'

•	 'l me at 415-'

•	 . . . and so on.

You pass chunk to isPhoneNumber() to see whether it matches the phone
number pattern , and if so, you print the chunk.

Continue to loop through message, and eventually the 12 characters
in chunk will be a phone number. The loop goes through the entire string,
testing each 12-character piece and printing any chunk it finds that satisfies
isPhoneNumber(). Once we’re done going through message, we print Done.

While the string in message is short in this example, it could be millions
of characters long and the program would still run in less than a second. A
similar program that finds phone numbers using regular expressions would
also run in less than a second, but regular expressions make it quicker to
write these programs.

Finding Patterns of Text with Regular Expressions
The previous phone number–finding program works, but it uses a lot of
code to do something limited: the isPhoneNumber() function is 17 lines but
can find only one pattern of phone numbers. What about a phone number
formatted like 415.555.4242 or (415) 555-4242? What if the phone num-
ber had an extension, like 415-555-4242 x99? The isPhoneNumber() function
would fail to validate them. You could add yet more code for these addi-
tional patterns, but there is an easier way.

Regular expressions, called regexes for short, are descriptions for a pat-
tern of text. For example, a \d in a regex stands for a digit character—that
is, any single numeral from 0 to 9. The regex \d\d\d-\d\d\d-\d\d\d\d is used
by Python to match the same text pattern the previous isPhoneNumber()
function did: a string of three numbers, a hyphen, three more numbers,
another hyphen, and four numbers. Any other string would not match the
\d\d\d-\d\d\d-\d\d\d\d regex.

But regular expressions can be much more sophisticated. For example,
adding a 3 in braces ({3}) after a pattern is like saying, “Match this pattern
three times.” So the slightly shorter regex \d{3}-\d{3}-\d{4} also matches the
correct phone number format.

Pattern Matching with Regular Expressions 165

Creating Regex Objects
All the regex functions in Python are in the re module. Enter the following
into the interactive shell to import this module:

>>> import re

N O T E 	 Most of the examples in this chapter will require the re module, so remember to import
it at the beginning of any script you write or any time you restart Mu. Otherwise,
you’ll get a NameError: name 're' is not defined error message.

Passing a string value representing your regular expression to
re.compile() returns a Regex pattern object (or simply, a Regex object).

To create a Regex object that matches the phone number pattern, enter
the following into the interactive shell. (Remember that \d means “a digit
character” and \d\d\d-\d\d\d-\d\d\d\d is the regular expression for a phone
number pattern.)

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

Now the phoneNumRegex variable contains a Regex object.

Matching Regex Objects
A Regex object’s search() method searches the string it is passed for any
matches to the regex. The search() method will return None if the regex pat-
tern is not found in the string. If the pattern is found, the search() method
returns a Match object, which have a group() method that will return the
actual matched text from the searched string. (I’ll explain groups shortly.)
For example, enter the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')
>>> mo = phoneNumRegex.search('My number is 415-555-4242.')
>>> print('Phone number found: ' + mo.group())
Phone number found: 415-555-4242

The mo variable name is just a generic name to use for Match objects.
This example might seem complicated at first, but it is much shorter than
the earlier isPhoneNumber.py program and does the same thing.

Here, we pass our desired pattern to re.compile() and store the result-
ing Regex object in phoneNumRegex. Then we call search() on phoneNumRegex and
pass search() the string we want to match for during the search. The result
of the search gets stored in the variable mo. In this example, we know that
our pattern will be found in the string, so we know that a Match object will
be returned. Knowing that mo contains a Match object and not the null value
None, we can call group() on mo to return the match. Writing mo.group() inside
our print() function call displays the whole match, 415-555-4242.

166 Chapter 7

Review of Regular Expression Matching
While there are several steps to using regular expressions in Python, each
step is fairly simple.

1.	 Import the regex module with import re.

2.	 Create a Regex object with the re.compile() function. (Remember to use
a raw string.)

3.	 Pass the string you want to search into the Regex object’s search()
method. This returns a Match object.

4.	 Call the Match object’s group() method to return a string of the actual
matched text.

N O T E 	 While I encourage you to enter the example code into the interactive shell, you
should also make use of web-based regular expression testers, which can show you
exactly how a regex matches a piece of text that you enter. I recommend the tester
at https://pythex.org/.

More Pattern Matching with Regular Expressions
Now that you know the basic steps for creating and finding regular expres-
sion objects using Python, you’re ready to try some of their more powerful
pattern-matching capabilities.

Grouping with Parentheses
Say you want to separate the area code from the rest of the phone number.
Adding parentheses will create groups in the regex: (\d\d\d)-(\d\d\d-\d\d\
d\d). Then you can use the group() match object method to grab the match-
ing text from just one group.

The first set of parentheses in a regex string will be group 1. The sec-
ond set will be group 2. By passing the integer 1 or 2 to the group() match
object method, you can grab different parts of the matched text. Passing 0
or nothing to the group() method will return the entire matched text. Enter
the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d-\d\d\d\d)')
>>> mo = phoneNumRegex.search('My number is 415-555-4242.')
>>> mo.group(1)
'415'
>>> mo.group(2)
'555-4242'
>>> mo.group(0)
'415-555-4242'
>>> mo.group()
'415-555-4242'

If you would like to retrieve all the groups at once, use the groups()
method—note the plural form for the name.

Pattern Matching with Regular Expressions 167

>>> mo.groups()
('415', '555-4242')
>>> areaCode, mainNumber = mo.groups()
>>> print(areaCode)
415
>>> print(mainNumber)
555-4242

Since mo.groups() returns a tuple of multiple values, you can use the
multiple-assignment trick to assign each value to a separate variable, as in
the previous areaCode, mainNumber = mo.groups() line.

Parentheses have a special meaning in regular expressions, but what
do you do if you need to match a parenthesis in your text? For instance,
maybe the phone numbers you are trying to match have the area code set
in parentheses. In this case, you need to escape the (and) characters with
a backslash. Enter the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'(\(\d\d\d\)) (\d\d\d-\d\d\d\d)')
>>> mo = phoneNumRegex.search('My phone number is (415) 555-4242.')
>>> mo.group(1)
'(415)'
>>> mo.group(2)
'555-4242'

The \(and \) escape characters in the raw string passed to re.compile()
will match actual parenthesis characters. In regular expressions, the follow-
ing characters have special meanings:

. ^ $ * + ? { } [] \ | ()

If you want to detect these characters as part of your text pattern, you
need to escape them with a backslash:

\. \^ \$ * \+ \? \{ \} \[\] \\ \| \(\)

Make sure to double-check that you haven’t mistaken escaped parenthe-
ses \(and \) for parentheses (and) in a regular expression. If you receive
an error message about “missing)” or “unbalanced parenthesis,” you may
have forgotten to include the closing unescaped parenthesis for a group,
like in this example:

>>> re.compile(r'(\(Parentheses\)')
Traceback (most recent call last):
 --snip--
re.error: missing), unterminated subpattern at position 0

The error message tells you that there is an opening parenthesis at
index 0 of the r'(\(Parentheses\)' string that is missing its corresponding
closing parenthesis.

168 Chapter 7

Matching Multiple Groups with the Pipe
The | character is called a pipe. You can use it anywhere you want to match
one of many expressions. For example, the regular expression r'Batman|Tina
Fey' will match either 'Batman' or 'Tina Fey'.

When both Batman and Tina Fey occur in the searched string, the first
occurrence of matching text will be returned as the Match object. Enter the
following into the interactive shell:

>>> heroRegex = re.compile (r'Batman|Tina Fey')
>>> mo1 = heroRegex.search('Batman and Tina Fey')
>>> mo1.group()
'Batman'

>>> mo2 = heroRegex.search('Tina Fey and Batman')
>>> mo2.group()
'Tina Fey'

N O T E 	 You can find all matching occurrences with the findall() method that’s discussed in
“The findall() Method” on page 171.

You can also use the pipe to match one of several patterns as part
of your regex. For example, say you wanted to match any of the strings
'Batman', 'Batmobile', 'Batcopter', and 'Batbat'. Since all these strings start
with Bat, it would be nice if you could specify that prefix only once. This can
be done with parentheses. Enter the following into the interactive shell:

>>> batRegex = re.compile(r'Bat(man|mobile|copter|bat)')
>>> mo = batRegex.search('Batmobile lost a wheel')
>>> mo.group()
'Batmobile'
>>> mo.group(1)
'mobile'

The method call mo.group() returns the full matched text 'Batmobile', while
mo.group(1) returns just the part of the matched text inside the first parenthe-
ses group, 'mobile'. By using the pipe character and grouping parentheses, you
can specify several alternative patterns you would like your regex to match.

If you need to match an actual pipe character, escape it with a backslash,
like \|.

Optional Matching with the Question Mark
Sometimes there is a pattern that you want to match only optionally. That
is, the regex should find a match regardless of whether that bit of text is
there. The ? character flags the group that precedes it as an optional part
of the pattern. For example, enter the following into the interactive shell:

>>> batRegex = re.compile(r'Bat(wo)?man')
>>> mo1 = batRegex.search('The Adventures of Batman')

Pattern Matching with Regular Expressions 169

>>> mo1.group()
'Batman'

>>> mo2 = batRegex.search('The Adventures of Batwoman')
>>> mo2.group()
'Batwoman'

The (wo)? part of the regular expression means that the pattern wo is
an optional group. The regex will match text that has zero instances or one
instance of wo in it. This is why the regex matches both 'Batwoman' and 'Batman'.

Using the earlier phone number example, you can make the regex look
for phone numbers that do or do not have an area code. Enter the following
into the interactive shell:

>>> phoneRegex = re.compile(r'(\d\d\d-)?\d\d\d-\d\d\d\d')
>>> mo1 = phoneRegex.search('My number is 415-555-4242')
>>> mo1.group()
'415-555-4242'

>>> mo2 = phoneRegex.search('My number is 555-4242')
>>> mo2.group()
'555-4242'

You can think of the ? as saying, “Match zero or one of the group pre-
ceding this question mark.”

If you need to match an actual question mark character, escape it with \?.

Matching Zero or More with the Star
The * (called the star or asterisk) means “match zero or more”—the group
that precedes the star can occur any number of times in the text. It can be
completely absent or repeated over and over again. Let’s look at the Batman
example again.

>>> batRegex = re.compile(r'Bat(wo)*man')
>>> mo1 = batRegex.search('The Adventures of Batman')
>>> mo1.group()
'Batman'

>>> mo2 = batRegex.search('The Adventures of Batwoman')
>>> mo2.group()
'Batwoman'

>>> mo3 = batRegex.search('The Adventures of Batwowowowoman')
>>> mo3.group()
'Batwowowowoman'

For 'Batman', the (wo)* part of the regex matches zero instances of wo
in the string; for 'Batwoman', the (wo)* matches one instance of wo; and for
'Batwowowowoman', (wo)* matches four instances of wo.

If you need to match an actual star character, prefix the star in the
regular expression with a backslash, *.

170 Chapter 7

Matching One or More with the Plus
While * means “match zero or more,” the + (or plus) means “match one or
more.” Unlike the star, which does not require its group to appear in the
matched string, the group preceding a plus must appear at least once. It is
not optional. Enter the following into the interactive shell, and compare it
with the star regexes in the previous section:

>>> batRegex = re.compile(r'Bat(wo)+man')
>>> mo1 = batRegex.search('The Adventures of Batwoman')
>>> mo1.group()
'Batwoman'

>>> mo2 = batRegex.search('The Adventures of Batwowowowoman')
>>> mo2.group()
'Batwowowowoman'

>>> mo3 = batRegex.search('The Adventures of Batman')
>>> mo3 == None
True

The regex Bat(wo)+man will not match the string 'The Adventures of
Batman', because at least one wo is required by the plus sign.

If you need to match an actual plus sign character, prefix the plus sign
with a backslash to escape it: \+.

Matching Specific Repetitions with Braces
If you have a group that you want to repeat a specific number of times,
follow the group in your regex with a number in braces. For example, the
regex (Ha){3} will match the string 'HaHaHa', but it will not match 'HaHa',
since the latter has only two repeats of the (Ha) group.

Instead of one number, you can specify a range by writing a minimum,
a comma, and a maximum in between the braces. For example, the regex
(Ha){3,5} will match 'HaHaHa', 'HaHaHaHa', and 'HaHaHaHaHa'.

You can also leave out the first or second number in the braces to leave
the minimum or maximum unbounded. For example, (Ha){3,} will match
three or more instances of the (Ha) group, while (Ha){,5} will match zero
to five instances. Braces can help make your regular expressions shorter.
These two regular expressions match identical patterns:

(Ha){3}
(Ha)(Ha)(Ha)

And these two regular expressions also match identical patterns:

(Ha){3,5}
((Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha)(Ha))

Pattern Matching with Regular Expressions 171

Enter the following into the interactive shell:

>>> haRegex = re.compile(r'(Ha){3}')
>>> mo1 = haRegex.search('HaHaHa')
>>> mo1.group()
'HaHaHa'

>>> mo2 = haRegex.search('Ha')
>>> mo2 == None
True

Here, (Ha){3} matches 'HaHaHa' but not 'Ha'. Since it doesn’t match 'Ha',
search() returns None.

Greedy and Non-greedy Matching
Since (Ha){3,5} can match three, four, or five instances of Ha in the string
'HaHaHaHaHa', you may wonder why the Match object’s call to group() in the
previous brace example returns 'HaHaHaHaHa' instead of the shorter possibili-
ties. After all, 'HaHaHa' and 'HaHaHaHa' are also valid matches of the regular
expression (Ha){3,5}.

Python’s regular expressions are greedy by default, which means that in
ambiguous situations they will match the longest string possible. The non-
greedy (also called lazy) version of the braces, which matches the shortest
string possible, has the closing brace followed by a question mark.

Enter the following into the interactive shell, and notice the differ-
ence between the greedy and non-greedy forms of the braces searching the
same string:

>>> greedyHaRegex = re.compile(r'(Ha){3,5}')
>>> mo1 = greedyHaRegex.search('HaHaHaHaHa')
>>> mo1.group()
'HaHaHaHaHa'

>>> nongreedyHaRegex = re.compile(r'(Ha){3,5}?')
>>> mo2 = nongreedyHaRegex.search('HaHaHaHaHa')
>>> mo2.group()
'HaHaHa'

Note that the question mark can have two meanings in regular expres-
sions: declaring a non-greedy match or flagging an optional group. These
meanings are entirely unrelated.

The findall() Method
In addition to the search() method, Regex objects also have a findall()
method. While search() will return a Match object of the first matched text
in the searched string, the findall() method will return the strings of every

172 Chapter 7

match in the searched string. To see how search() returns a Match object
only on the first instance of matching text, enter the following into the
interactive shell:

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')
>>> mo = phoneNumRegex.search('Cell: 415-555-9999 Work: 212-555-0000')
>>> mo.group()
'415-555-9999'

On the other hand, findall() will not return a Match object but a list of
strings—as long as there are no groups in the regular expression. Each string in
the list is a piece of the searched text that matched the regular expression.
Enter the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') # has no groups
>>> phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-0000')
['415-555-9999', '212-555-0000']

If there are groups in the regular expression, then findall() will return
a list of tuples. Each tuple represents a found match, and its items are the
matched strings for each group in the regex. To see findall() in action,
enter the following into the interactive shell (notice that the regular expres-
sion being compiled now has groups in parentheses):

>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d)-(\d\d\d\d)') # has groups
>>> phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-0000')
[('415', '555', '9999'), ('212', '555', '0000')]

To summarize what the findall() method returns, remember the
following:

•	 When called on a regex with no groups, such as \d\d\d-\d\d\d-\d\
d\d\d, the method findall() returns a list of string matches, such as
['415‑555-9999', '212-555-0000'].

•	 When called on a regex that has groups, such as (\d\d\d)-(\d\d\d)​
-(\d\d\d\d), the method findall() returns a list of tuples of strings
(one string for each group), such as [('415', '555', '9999'), ('212',
'555', '0000')].

Character Classes
In the earlier phone number regex example, you learned that \d could
stand for any numeric digit. That is, \d is shorthand for the regular expres-
sion (0|1|2|3|4|5|6|7|8|9). There are many such shorthand character classes, as
shown in Table 7-1.

Pattern Matching with Regular Expressions 173

Table 7-1: Shorthand Codes for Common Character Classes

Shorthand character class Represents

\d Any numeric digit from 0 to 9.
\D Any character that is not a numeric digit from 0 to 9.
\w Any letter, numeric digit, or the underscore character.

(Think of this as matching “word” characters.)
\W Any character that is not a letter, numeric digit, or the

underscore character.
\s Any space, tab, or newline character. (Think of this as

matching “space” characters.)
\S Any character that is not a space, tab, or newline.

Character classes are nice for shortening regular expressions. The char-
acter class [0-5] will match only the numbers 0 to 5; this is much shorter
than typing (0|1|2|3|4|5). Note that while \d matches digits and \w matches
digits, letters, and the underscore, there is no shorthand character class
that matches only letters. (Though you can use the [a-zA-Z] character class,
as explained next.)

For example, enter the following into the interactive shell:

>>> xmasRegex = re.compile(r'\d+\s\w+')
>>> xmasRegex.findall('12 drummers, 11 pipers, 10 lords, 9 ladies, 8 maids, 7
swans, 6 geese, 5 rings, 4 birds, 3 hens, 2 doves, 1 partridge')
['12 drummers', '11 pipers', '10 lords', '9 ladies', '8 maids', '7 swans', '6
geese', '5 rings', '4 birds', '3 hens', '2 doves', '1 partridge']

The regular expression \d+\s\w+ will match text that has one or more
numeric digits (\d+), followed by a whitespace character (\s), followed by
one or more letter/digit/underscore characters (\w+). The findall() method
returns all matching strings of the regex pattern in a list.

Making Your Own Character Classes
There are times when you want to match a set of characters but the short-
hand character classes (\d, \w, \s, and so on) are too broad. You can define
your own character class using square brackets. For example, the character
class [aeiouAEIOU] will match any vowel, both lowercase and uppercase. Enter
the following into the interactive shell:

>>> vowelRegex = re.compile(r'[aeiouAEIOU]')
>>> vowelRegex.findall('RoboCop eats baby food. BABY FOOD.')
['o', 'o', 'o', 'e', 'a', 'a', 'o', 'o', 'A', 'O', 'O']

174 Chapter 7

You can also include ranges of letters or numbers by using a hyphen.
For example, the character class [a-zA-Z0-9] will match all lowercase letters,
uppercase letters, and numbers.

Note that inside the square brackets, the normal regular expression
symbols are not interpreted as such. This means you do not need to escape
the ., *, ?, or () characters with a preceding backslash. For example, the
character class [0-5.] will match digits 0 to 5 and a period. You do not need
to write it as [0-5\.].

By placing a caret character (^) just after the character class’s opening
bracket, you can make a negative character class. A negative character class
will match all the characters that are not in the character class. For example,
enter the following into the interactive shell:

>>> consonantRegex = re.compile(r'[^aeiouAEIOU]')
>>> consonantRegex.findall('RoboCop eats baby food. BABY FOOD.')
['R', 'b', 'C', 'p', ' ', 't', 's', ' ', 'b', 'b', 'y', ' ', 'f', 'd', '.', '
', 'B', 'B', 'Y', ' ', 'F', 'D', '.']

Now, instead of matching every vowel, we’re matching every character
that isn’t a vowel.

The Caret and Dollar Sign Characters
You can also use the caret symbol (^) at the start of a regex to indicate that
a match must occur at the beginning of the searched text. Likewise, you can
put a dollar sign ($) at the end of the regex to indicate the string must end
with this regex pattern. And you can use the ^ and $ together to indicate
that the entire string must match the regex—that is, it’s not enough for a
match to be made on some subset of the string.

For example, the r'^Hello' regular expression string matches strings
that begin with 'Hello'. Enter the following into the interactive shell:

>>> beginsWithHello = re.compile(r'^Hello')
>>> beginsWithHello.search('Hello, world!')
<re.Match object; span=(0, 5), match='Hello'>
>>> beginsWithHello.search('He said hello.') == None
True

The r'\d$' regular expression string matches strings that end with a
numeric character from 0 to 9. Enter the following into the interactive shell:

>>> endsWithNumber = re.compile(r'\d$')
>>> endsWithNumber.search('Your number is 42')
<re.Match object; span=(16, 17), match='2'>
>>> endsWithNumber.search('Your number is forty two.') == None
True

Pattern Matching with Regular Expressions 175

The r'^\d+$' regular expression string matches strings that both begin
and end with one or more numeric characters. Enter the following into the
interactive shell:

>>> wholeStringIsNum = re.compile(r'^\d+$')
>>> wholeStringIsNum.search('1234567890')
<re.Match object; span=(0, 10), match='1234567890'>
>>> wholeStringIsNum.search('12345xyz67890') == None
True
>>> wholeStringIsNum.search('12 34567890') == None
True

The last two search() calls in the previous interactive shell example
demonstrate how the entire string must match the regex if ^ and $ are used.

I always confuse the meanings of these two symbols, so I use the mne-
monic “Carrots cost dollars” to remind myself that the caret comes first and
the dollar sign comes last.

The Wildcard Character
The . (or dot) character in a regular expression is called a wildcard and will
match any character except for a newline. For example, enter the following
into the interactive shell:

>>> atRegex = re.compile(r'.at')
>>> atRegex.findall('The cat in the hat sat on the flat mat.')
['cat', 'hat', 'sat', 'lat', 'mat']

Remember that the dot character will match just one character, which
is why the match for the text flat in the previous example matched only lat.
To match an actual dot, escape the dot with a backslash: \..

Matching Everything with Dot-Star
Sometimes you will want to match everything and anything. For example,
say you want to match the string 'First Name:', followed by any and all text,
followed by 'Last Name:', and then followed by anything again. You can
use the dot-star (.*) to stand in for that “anything.” Remember that the
dot character means “any single character except the newline,” and the
star character means “zero or more of the preceding character.”

Enter the following into the interactive shell:

>>> nameRegex = re.compile(r'First Name: (.*) Last Name: (.*)')
>>> mo = nameRegex.search('First Name: Al Last Name: Sweigart')
>>> mo.group(1)
'Al'
>>> mo.group(2)
'Sweigart'

176 Chapter 7

The dot-star uses greedy mode: It will always try to match as much text as
possible. To match any and all text in a non-greedy fashion, use the dot, star,
and question mark (.*?). Like with braces, the question mark tells Python
to match in a non-greedy way.

Enter the following into the interactive shell to see the difference
between the greedy and non-greedy versions:

>>> nongreedyRegex = re.compile(r'<.*?>')
>>> mo = nongreedyRegex.search('<To serve man> for dinner.>')
>>> mo.group()
'<To serve man>'

>>> greedyRegex = re.compile(r'<.*>')
>>> mo = greedyRegex.search('<To serve man> for dinner.>')
>>> mo.group()
'<To serve man> for dinner.>'

Both regexes roughly translate to “Match an opening angle bracket,
followed by anything, followed by a closing angle bracket.” But the string
'<To serve man> for dinner.>' has two possible matches for the closing angle
bracket. In the non-greedy version of the regex, Python matches the short-
est possible string: '<To serve man>'. In the greedy version, Python matches
the longest possible string: '<To serve man> for dinner.>'.

Matching Newlines with the Dot Character
The dot-star will match everything except a newline. By passing re.DOTALL as
the second argument to re.compile(), you can make the dot character match
all characters, including the newline character.

Enter the following into the interactive shell:

>>> noNewlineRegex = re.compile('.*')
>>> noNewlineRegex.search('Serve the public trust.\nProtect the innocent.
\nUphold the law.').group()
'Serve the public trust.'

>>> newlineRegex = re.compile('.*', re.DOTALL)
>>> newlineRegex.search('Serve the public trust.\nProtect the innocent.
\nUphold the law.').group()
'Serve the public trust.\nProtect the innocent.\nUphold the law.'

The regex noNewlineRegex, which did not have re.DOTALL passed to the
re.compile() call that created it, will match everything only up to the first
newline character, whereas newlineRegex, which did have re.DOTALL passed to
re.compile(), matches everything. This is why the newlineRegex.search() call
matches the full string, including its newline characters.

Pattern Matching with Regular Expressions 177

Review of Regex Symbols
This chapter covered a lot of notation, so here’s a quick review of what you
learned about basic regular expression syntax:

•	 The ? matches zero or one of the preceding group.

•	 The * matches zero or more of the preceding group.

•	 The + matches one or more of the preceding group.

•	 The {n} matches exactly n of the preceding group.

•	 The {n,} matches n or more of the preceding group.

•	 The {,m} matches 0 to m of the preceding group.

•	 The {n,m} matches at least n and at most m of the preceding group.

•	 {n,m}? or *? or +? performs a non-greedy match of the preceding group.

•	 ^spam means the string must begin with spam.

•	 spam$ means the string must end with spam.

•	 The . matches any character, except newline characters.

•	 \d, \w, and \s match a digit, word, or space character, respectively.

•	 \D, \W, and \S match anything except a digit, word, or space character,
respectively.

•	 [abc] matches any character between the brackets (such as a, b, or c).

•	 [^abc] matches any character that isn’t between the brackets.

Case-Insensitive Matching
Normally, regular expressions match text with the exact casing you specify.
For example, the following regexes match completely different strings:

>>> regex1 = re.compile('RoboCop')
>>> regex2 = re.compile('ROBOCOP')
>>> regex3 = re.compile('robOcop')
>>> regex4 = re.compile('RobocOp')

But sometimes you care only about matching the letters without wor-
rying whether they’re uppercase or lowercase. To make your regex case-
insensitive, you can pass re.IGNORECASE or re.I as a second argument to
re.compile(). Enter the following into the interactive shell:

>>> robocop = re.compile(r'robocop', re.I)
>>> robocop.search('RoboCop is part man, part machine, all cop.').group()
'RoboCop'

>>> robocop.search('ROBOCOP protects the innocent.').group()
'ROBOCOP'

>>> robocop.search('Al, why does your programming book talk about robocop so much?').group()
'robocop'

178 Chapter 7

Substituting Strings with the sub() Method
Regular expressions can not only find text patterns but can also substitute
new text in place of those patterns. The sub() method for Regex objects
is passed two arguments. The first argument is a string to replace any
matches. The second is the string for the regular expression. The sub()
method returns a string with the substitutions applied.

For example, enter the following into the interactive shell:

>>> namesRegex = re.compile(r'Agent \w+')
>>> namesRegex.sub('CENSORED', 'Agent Alice gave the secret documents to Agent Bob.')
'CENSORED gave the secret documents to CENSORED.'

Sometimes you may need to use the matched text itself as part of the
substitution. In the first argument to sub(), you can type \1, \2, \3, and so
on, to mean “Enter the text of group 1, 2, 3, and so on, in the substitution.”

For example, say you want to censor the names of the secret agents by
showing just the first letters of their names. To do this, you could use the
regex Agent (\w)\w* and pass r'\1****' as the first argument to sub(). The \1
in that string will be replaced by whatever text was matched by group 1—
that is, the (\w) group of the regular expression.

>>> agentNamesRegex = re.compile(r'Agent (\w)\w*')
>>> agentNamesRegex.sub(r'\1****', 'Agent Alice told Agent Carol that Agent
Eve knew Agent Bob was a double agent.')
A**** told C**** that E**** knew B**** was a double agent.'

Managing Complex Regexes
Regular expressions are fine if the text pattern you need to match is simple.
But matching complicated text patterns might require long, convoluted reg-
ular expressions. You can mitigate this by telling the re.compile() function
to ignore whitespace and comments inside the regular expression string.
This “verbose mode” can be enabled by passing the variable re.VERBOSE as
the second argument to re.compile().

Now instead of a hard-to-read regular expression like this:

phoneRegex = re.compile(r'((\d{3}|\(\d{3}\))?(\s|-|\.)?\d{3}(\s|-|\.)\d{4}
(\s*(ext|x|ext.)\s*\d{2,5})?)')

you can spread the regular expression over multiple lines with comments
like this:

phoneRegex = re.compile(r'''(
 (\d{3}|\(\d{3}\))? # area code
 (\s|-|\.)? # separator
 \d{3} # first 3 digits
 (\s|-|\.) # separator
 \d{4} # last 4 digits

Pattern Matching with Regular Expressions 179

 (\s*(ext|x|ext.)\s*\d{2,5})? # extension
)''', re.VERBOSE)

Note how the previous example uses the triple-quote syntax (''') to
create a multiline string so that you can spread the regular expression defi-
nition over many lines, making it much more legible.

The comment rules inside the regular expression string are the same
as regular Python code: the # symbol and everything after it to the end
of the line are ignored. Also, the extra spaces inside the multiline string
for the regular expression are not considered part of the text pattern to be
matched. This lets you organize the regular expression so it’s easier to read.

Combining re.IGNORECASE, re.DOTALL, and re.VERBOSE
What if you want to use re.VERBOSE to write comments in your regular
expression but also want to use re.IGNORECASE to ignore capitalization?
Unfortunately, the re.compile() function takes only a single value as its
second argument. You can get around this limitation by combining the
re.IGNORECASE, re.DOTALL, and re.VERBOSE variables using the pipe character
(|), which in this context is known as the bitwise or operator.

So if you want a regular expression that’s case-insensitive and includes
newlines to match the dot character, you would form your re.compile() call
like this:

>>> someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL)

Including all three options in the second argument will look like this:

>>> someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL | re.VERBOSE)

This syntax is a little old-fashioned and originates from early versions
of Python. The details of the bitwise operators are beyond the scope of this
book, but check out the resources at https://nostarch.com/automatestuff2/ for
more information. You can also pass other options for the second argument;
they’re uncommon, but you can read more about them in the resources, too.

Project: Phone Number and Email Address Extractor
Say you have the boring task of finding every phone number and email
address in a long web page or document. If you manually scroll through
the page, you might end up searching for a long time. But if you had a pro-
gram that could search the text in your clipboard for phone numbers and
email addresses, you could simply press ctrl-A to select all the text, press
ctrl-C to copy it to the clipboard, and then run your program. It could
replace the text on the clipboard with just the phone numbers and email
addresses it finds.

180 Chapter 7

Whenever you’re tackling a new project, it can be tempting to dive right
into writing code. But more often than not, it’s best to take a step back and
consider the bigger picture. I recommend first drawing up a high-level plan
for what your program needs to do. Don’t think about the actual code yet—
you can worry about that later. Right now, stick to broad strokes.

For example, your phone and email address extractor will need to do
the following:

1.	 Get the text off the clipboard.

2.	 Find all phone numbers and email addresses in the text.

3.	 Paste them onto the clipboard.

Now you can start thinking about how this might work in code. The
code will need to do the following:

1.	 Use the pyperclip module to copy and paste strings.

2.	 Create two regexes, one for matching phone numbers and the other
for matching email addresses.

3.	 Find all matches, not just the first match, of both regexes.

4.	 Neatly format the matched strings into a single string to paste.

5.	 Display some kind of message if no matches were found in the text.

This list is like a road map for the project. As you write the code, you
can focus on each of these steps separately. Each step is fairly manageable
and expressed in terms of things you already know how to do in Python.

Step 1: Create a Regex for Phone Numbers
First, you have to create a regular expression to search for phone numbers.
Create a new file, enter the following, and save it as phoneAndEmail.py:

#! python3
phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(
 (\d{3}|\(\d{3}\))? # area code
 (\s|-|\.)? # separator
 (\d{3}) # first 3 digits
 (\s|-|\.) # separator
 (\d{4}) # last 4 digits
 (\s*(ext|x|ext.)\s*(\d{2,5}))? # extension
)''', re.VERBOSE)

TODO: Create email regex.

TODO: Find matches in clipboard text.

TODO: Copy results to the clipboard.

Pattern Matching with Regular Expressions 181

The TODO comments are just a skeleton for the program. They’ll be
replaced as you write the actual code.

The phone number begins with an optional area code, so the area code
group is followed with a question mark. Since the area code can be just three
digits (that is, \d{3}) or three digits within parentheses (that is, \(\d{3}\)),
you should have a pipe joining those parts. You can add the regex comment
Area code to this part of the multiline string to help you remember what
(\d{3}|\(\d{3}\))? is supposed to match.

The phone number separator character can be a space (\s), hyphen (-),
or period (.), so these parts should also be joined by pipes. The next few
parts of the regular expression are straightforward: three digits, followed
by another separator, followed by four digits. The last part is an optional
extension made up of any number of spaces followed by ext, x, or ext., fol-
lowed by two to five digits.

N O T E 	 It’s easy to get mixed up with regular expressions that contain groups with parenthe-
ses () and escaped parentheses \(\). Remember to double-check that you’re using
the correct one if you get a “missing), unterminated subpattern” error message.

Step 2: Create a Regex for Email Addresses
You will also need a regular expression that can match email addresses.
Make your program look like the following:

#! python3
phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(
--snip--

Create email regex.
emailRegex = re.compile(r'''(

  [a-zA-Z0-9._%+-]+ # username
  @ # @ symbol
  [a-zA-Z0-9.-]+ # domain name

 (\.[a-zA-Z]{2,4}) # dot-something
)''', re.VERBOSE)

TODO: Find matches in clipboard text.

TODO: Copy results to the clipboard.

The username part of the email address  is one or more characters
that can be any of the following: lowercase and uppercase letters, numbers,
a dot, an underscore, a percent sign, a plus sign, or a hyphen. You can put
all of these into a character class: [a-zA-Z0-9._%+-].

The domain and username are separated by an @ symbol . The
domain name  has a slightly less permissive character class with only
letters, numbers, periods, and hyphens: [a-zA-Z0-9.-]. And last will be

182 Chapter 7

the “dot-com” part (technically known as the top-level domain), which can
really be dot-anything. This is between two and four characters.

The format for email addresses has a lot of weird rules. This regular
expression won’t match every possible valid email address, but it’ll match
almost any typical email address you’ll encounter.

Step 3: Find All Matches in the Clipboard Text
Now that you have specified the regular expressions for phone numbers
and email addresses, you can let Python’s re module do the hard work of
finding all the matches on the clipboard. The pyperclip.paste() function
will get a string value of the text on the clipboard, and the findall() regex
method will return a list of tuples.

Make your program look like the following:

#! python3
phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(
--snip--

Find matches in clipboard text.
text = str(pyperclip.paste())

 matches = []
 for groups in phoneRegex.findall(text):

 phoneNum = '-'.join([groups[1], groups[3], groups[5]])
 if groups[8] != '':
 phoneNum += ' x' + groups[8]
 matches.append(phoneNum)

 for groups in emailRegex.findall(text):
 matches.append(groups[0])

TODO: Copy results to the clipboard.

There is one tuple for each match, and each tuple contains strings for
each group in the regular expression. Remember that group 0 matches the
entire regular expression, so the group at index 0 of the tuple is the one you
are interested in.

As you can see at , you’ll store the matches in a list variable named
matches. It starts off as an empty list, and a couple for loops. For the email
addresses, you append group 0 of each match . For the matched phone
numbers, you don’t want to just append group 0. While the program detects
phone numbers in several formats, you want the phone number appended
to be in a single, standard format. The phoneNum variable contains a string
built from groups 1, 3, 5, and 8 of the matched text . (These groups are
the area code, first three digits, last four digits, and extension.)

Pattern Matching with Regular Expressions 183

Step 4: Join the Matches into a String for the Clipboard
Now that you have the email addresses and phone numbers as a list of strings
in matches, you want to put them on the clipboard. The pyperclip.copy() func-
tion takes only a single string value, not a list of strings, so you call the join()
method on matches.

To make it easier to see that the program is working, let’s print any
matches you find to the terminal. If no phone numbers or email addresses
were found, the program should tell the user this.

Make your program look like the following:

#! python3
phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

--snip--
for groups in emailRegex.findall(text):
 matches.append(groups[0])

Copy results to the clipboard.
if len(matches) > 0:
 pyperclip.copy('\n'.join(matches))
 print('Copied to clipboard:')
 print('\n'.join(matches))
else:
 print('No phone numbers or email addresses found.')

Running the Program
For an example, open your web browser to the No Starch Press contact page
at https://nostarch.com/contactus/, press ctrl-A to select all the text on the
page, and press ctrl-C to copy it to the clipboard. When you run this pro-
gram, the output will look something like this:

Copied to clipboard:
800-420-7240
415-863-9900
415-863-9950
info@nostarch.com
media@nostarch.com
academic@nostarch.com
info@nostarch.com

Ideas for Similar Programs
Identifying patterns of text (and possibly substituting them with the sub()
method) has many different potential applications. For example, you could:

•	 Find website URLs that begin with http:// or https://.

•	 Clean up dates in different date formats (such as 3/14/2019, 03-14-2019,
and 2015/3/19) by replacing them with dates in a single, standard format.

184 Chapter 7

•	 Remove sensitive information such as Social Security or credit
card numbers.

•	 Find common typos such as multiple spaces between words, acciden-
tally accidentally repeated words, or multiple exclamation marks at the
end of sentences. Those are annoying!!

Summary
While a computer can search for text quickly, it must be told precisely what
to look for. Regular expressions allow you to specify the pattern of charac-
ters you are looking for, rather than the exact text itself. In fact, some word
processing and spreadsheet applications provide find-and-replace features
that allow you to search using regular expressions.

The re module that comes with Python lets you compile Regex objects.
These objects have several methods: search() to find a single match, findall()
to find all matching instances, and sub() to do a find-and-replace substitution
of text.

You can find out more in the official Python documentation at https://
docs.python.org/3/library/re.html. Another useful resource is the tutorial
website https://www.regular-expressions.info/.

Practice Questions

1.	 What is the function that creates Regex objects?

2.	 Why are raw strings often used when creating Regex objects?

3.	 What does the search() method return?

4.	 How do you get the actual strings that match the pattern from a
Match object?

5.	 In the regex created from r'(\d\d\d)-(\d\d\d-\d\d\d\d)', what does
group 0 cover? Group 1? Group 2?

6.	 Parentheses and periods have specific meanings in regular expression
syntax. How would you specify that you want a regex to match actual
parentheses and period characters?

7.	 The findall() method returns a list of strings or a list of tuples of
strings. What makes it return one or the other?

8.	 What does the | character signify in regular expressions?

9.	 What two things does the ? character signify in regular expressions?

10.	 What is the difference between the + and * characters in regular
expressions?

11.	 What is the difference between {3} and {3,5} in regular expressions?

12.	 What do the \d, \w, and \s shorthand character classes signify in
regular expressions?

Pattern Matching with Regular Expressions 185

13.	 What do the \D, \W, and \S shorthand character classes signify in
regular expressions?

14.	 What is the difference between .* and .*??

15.	 What is the character class syntax to match all numbers and
lowercase letters?

16.	 How do you make a regular expression case-insensitive?

17.	 What does the . character normally match? What does it match if
re.DOTALL is passed as the second argument to re.compile()?

18.	 If numRegex = re.compile(r'\d+'), what will numRegex.sub('X', '12 drummers,
11 pipers, five rings, 3 hens') return?

19.	 What does passing re.VERBOSE as the second argument to re.compile()
allow you to do?

20.	 How would you write a regex that matches a number with commas for
every three digits? It must match the following:

•	 '42'

•	 '1,234'

•	 '6,368,745'

but not the following:

•	 '12,34,567' (which has only two digits between the commas)

•	 '1234' (which lacks commas)

21.	 How would you write a regex that matches the full name of someone
whose last name is Watanabe? You can assume that the first name that
comes before it will always be one word that begins with a capital letter.
The regex must match the following:

•	 'Haruto Watanabe'

•	 'Alice Watanabe'

•	 'RoboCop Watanabe'

but not the following:

•	 'haruto Watanabe' (where the first name is not capitalized)

•	 'Mr. Watanabe' (where the preceding word has a nonletter character)

•	 'Watanabe' (which has no first name)

•	 'Haruto watanabe' (where Watanabe is not capitalized)

22.	 How would you write a regex that matches a sentence where the first word
is either Alice, Bob, or Carol; the second word is either eats, pets, or throws;
the third word is apples, cats, or baseballs; and the sentence ends with a
period? This regex should be case-insensitive. It must match the following:

•	 'Alice eats apples.'

•	 'Bob pets cats.'

•	 'Carol throws baseballs.'

•	 'Alice throws Apples.'

•	 'BOB EATS CATS.'

186 Chapter 7

but not the following:

•	 'RoboCop eats apples.'

•	 'ALICE THROWS FOOTBALLS.'

•	 'Carol eats 7 cats.'

Practice Projects
For practice, write programs to do the following tasks.

Date Detection
Write a regular expression that can detect dates in the DD/MM/YYYY for-
mat. Assume that the days range from 01 to 31, the months range from 01
to 12, and the years range from 1000 to 2999. Note that if the day or month
is a single digit, it’ll have a leading zero.

The regular expression doesn’t have to detect correct days for each
month or for leap years; it will accept nonexistent dates like 31/02/2020 or
31/04/2021. Then store these strings into variables named month, day, and
year, and write additional code that can detect if it is a valid date. April,
June, September, and November have 30 days, February has 28 days, and
the rest of the months have 31 days. February has 29 days in leap years.
Leap years are every year evenly divisible by 4, except for years evenly divis-
ible by 100, unless the year is also evenly divisible by 400. Note how this cal-
culation makes it impossible to make a reasonably sized regular expression
that can detect a valid date.

Strong Password Detection
Write a function that uses regular expressions to make sure the password
string it is passed is strong. A strong password is defined as one that is at
least eight characters long, contains both uppercase and lowercase charac-
ters, and has at least one digit. You may need to test the string against mul-
tiple regex patterns to validate its strength.

Regex Version of the strip() Method
Write a function that takes a string and does the same thing as the strip()
string method. If no other arguments are passed other than the string to
strip, then whitespace characters will be removed from the beginning and
end of the string. Otherwise, the characters specified in the second argu-
ment to the function will be removed from the string.

8
I N P U T V A L I D A T I O N

Input validation code checks that values
entered by the user, such as text from the

input() function, are formatted correctly. For
example, if you want users to enter their ages,

your code shouldn’t accept nonsensical answers such
as negative numbers (which are outside the range of
acceptable integers) or words (which are the wrong data type). Input vali-
dation can also prevent bugs or security vulnerabilities. If you implement
a withdrawFromAccount() function that takes an argument for the amount to
subtract from an account, you need to ensure the amount is a positive num-
ber. If the withdrawFromAccount() function subtracts a negative number from
the account, the “withdrawal” will end up adding money!

188 Chapter 8

Typically, we perform input validation by repeatedly asking the user for
input until they enter valid text, as in the following example:

while True:
 print('Enter your age:')
 age = input()
 try:
 age = int(age)
 except:
 print('Please use numeric digits.')
 continue
 if age < 1:
 print('Please enter a positive number.')
 continue
 break

print(f'Your age is {age}.')

When you run this program, the output could look like this:

Enter your age:
five
Please use numeric digits.
Enter your age:
-2
Please enter a positive number.
Enter your age:
30
Your age is 30.

When you run this code, you’ll be prompted for your age until you
enter a valid one. This ensures that by the time the execution leaves the
while loop, the age variable will contain a valid value that won’t crash the
program later on.

However, writing input validation code for every input() call in your pro-
gram quickly becomes tedious. Also, you may miss certain cases and allow
invalid input to pass through your checks. In this chapter, you’ll learn how
to use the third-party PyInputPlus module for input validation.

The PyInputPlus Module
PyInputPlus contains functions similar to input() for several kinds of data:
numbers, dates, email addresses, and more. If the user ever enters invalid
input, such as a badly formatted date or a number that is outside of an
intended range, PyInputPlus will reprompt them for input just like our code
in the previous section did. PyInputPlus also has other useful features like
a limit for the number of times it reprompts users and a timeout if users are
required to respond within a time limit.

Input Validation 189

PyInputPlus is not a part of the Python Standard Library, so you must
install it separately using Pip. To install PyInputPlus, run pip install --user
pyinputplus from the command line. Appendix A has complete instructions
for installing third-party modules. To check if PyInputPlus installed correctly,
import it in the interactive shell:

>>> import pyinputplus

If no errors appear when you import the module, it has been success-
fully installed.

PyInputPlus has several functions for different kinds of input:

inputStr()  Is like the built-in input() function but has the gen-
eral PyInputPlus features. You can also pass a custom validation
function to it

inputNum()  Ensures the user enters a number and returns an int or
float, depending on if the number has a decimal point in it

inputChoice()  Ensures the user enters one of the provided choices

inputMenu()  Is similar to inputChoice(), but provides a menu with num-
bered or lettered options

inputDatetime()  Ensures the user enters a date and time

inputYesNo()  Ensures the user enters a “yes” or “no” response

inputBool()  Is similar to inputYesNo(), but takes a “True” or “False”
response and returns a Boolean value

inputEmail()  Ensures the user enters a valid email address

inputFilepath()  Ensures the user enters a valid file path and filename,
and can optionally check that a file with that name exists

inputPassword()  Is like the built-in input(), but displays * characters as
the user types so that passwords, or other sensitive information, aren’t
displayed on the screen

These functions will automatically reprompt the user for as long as they
enter invalid input:

>>> import pyinputplus as pyip
>>> response = pyip.inputNum()
five
'five' is not a number.
42
>>> response
42

The as pyip code in the import statement saves us from typing pyinputplus
each time we want to call a PyInputPlus function. Instead we can use the
shorter pyip name. If you take a look at the example, you see that unlike
input(), these functions return an int or float value: 42 and 3.14 instead of
the strings '42' and '3.14'.

190 Chapter 8

Just as you can pass a string to input() to provide a prompt, you can
pass a string to a PyInputPlus function’s prompt keyword argument to display
a prompt:

>>> response = input('Enter a number: ')
Enter a number: 42
>>> response
'42'
>>> import pyinputplus as pyip
>>> response = pyip.inputInt(prompt='Enter a number: ')
Enter a number: cat
'cat' is not an integer.
Enter a number: 42
>>> response
42

Use Python’s help() function to find out more about each of these
functions. For example, help(pyip.inputChoice) displays help information
for the inputChoice() function. Complete documentation can be found at
https://pyinputplus.readthedocs.io/.

Unlike Python’s built-in input(), PyInputPlus functions have several
additional features for input validation, as shown in the next section.

The min, max, greaterThan, and lessThan Keyword Arguments
The inputNum(), inputInt(), and inputFloat() functions, which accept int and
float numbers, also have min, max, greaterThan, and lessThan keyword arguments
for specifying a range of valid values. For example, enter the following into
the interactive shell:

>>> import pyinputplus as pyip
>>> response = pyip.inputNum('Enter num: ', min=4)
Enter num:3
Input must be at minimum 4.
Enter num:4
>>> response
4
>>> response = pyip.inputNum('Enter num: ', greaterThan=4)
Enter num: 4
Input must be greater than 4.
Enter num: 5
>>> response
5
>>> response = pyip.inputNum('>', min=4, lessThan=6)
Enter num: 6
Input must be less than 6.
Enter num: 3
Input must be at minimum 4.
Enter num: 4
>>> response
4

Input Validation 191

These keyword arguments are optional, but if supplied, the input can-
not be less than the min argument or greater than the max argument (though
the input can be equal to them). Also, the input must be greater than the
greaterThan and less than the lessThan arguments (that is, the input cannot
be equal to them).

The blank Keyword Argument
By default, blank input isn’t allowed unless the blank keyword argument is
set to True:

>>> import pyinputplus as pyip
>>> response = pyip.inputNum('Enter num: ')
Enter num:(blank input entered here)
Blank values are not allowed.
Enter num: 42
>>> response
42
>>> response = pyip.inputNum(blank=True)
(blank input entered here)
>>> response
''

Use blank=True if you’d like to make input optional so that the user
doesn’t need to enter anything.

The limit, timeout, and default Keyword Arguments
By default, the PyInputPlus functions will continue to ask the user for valid
input forever (or for as long as the program runs). If you’d like a function
to stop asking the user for input after a certain number of tries or a certain
amount of time, you can use the limit and timeout keyword arguments. Pass
an integer for the limit keyword argument to determine how many attempts
a PyInputPlus function will make to receive valid input before giving up,
and pass an integer for the timeout keyword argument to determine how
many seconds the user has to enter valid input before the PyInputPlus func-
tion gives up.

If the user fails to enter valid input, these keyword arguments will cause
the function to raise a RetryLimitException or TimeoutException, respectively.
For example, enter the following into the interactive shell:

>>> import pyinputplus as pyip
>>> response = pyip.inputNum(limit=2)
blah
'blah' is not a number.
Enter num: number
'number' is not a number.
Traceback (most recent call last):
 --snip--
pyinputplus.RetryLimitException
>>> response = pyip.inputNum(timeout=10)
42 (entered after 10 seconds of waiting)

192 Chapter 8

Traceback (most recent call last):
 --snip--
pyinputplus.TimeoutException

When you use these keyword arguments and also pass a default key-
word argument, the function returns the default value instead of raising an
exception. Enter the following into the interactive shell:

>>> response = pyip.inputNum(limit=2, default='N/A')
hello
'hello' is not a number.
world
'world' is not a number.
>>> response
'N/A'

Instead of raising RetryLimitException, the inputNum() function simply
returns the string 'N/A'.

The allowRegexes and blockRegexes Keyword Arguments
You can also use regular expressions to specify whether an input is allowed
or not. The allowRegexes and blockRegexes keyword arguments take a list of
regular expression strings to determine what the PyInputPlus function will
accept or reject as valid input. For example, enter the following code into
the interactive shell so that inputNum() will accept Roman numerals in addi-
tion to the usual numbers:

>>> import pyinputplus as pyip
>>> response = pyip.inputNum(allowRegexes=[r'(I|V|X|L|C|D|M)+', r'zero'])
XLII
>>> response
'XLII'
>>> response = pyip.inputNum(allowRegexes=[r'(i|v|x|l|c|d|m)+', r'zero'])
xlii
>>> response
'xlii'

Of course, this regex affects only what letters the inputNum() function
will accept from the user; the function will still accept Roman numerals
with invalid ordering such as 'XVX' or 'MILLI' because the r'(I|V|X|L|C|D|M)+'
regular expression accepts those strings.

You can also specify a list of regular expression strings that a PyInputPlus
function won’t accept by using the blockRegexes keyword argument. Enter
the following into the interactive shell so that inputNum() won’t accept even
numbers:

>>> import pyinputplus as pyip
>>> response = pyip.inputNum(blockRegexes=[r'[02468]$'])
42
This response is invalid.

Input Validation 193

44
This response is invalid.
43
>>> response
43

If you specify both an allowRegexes and blockRegexes argument, the allow
list overrides the block list. For example, enter the following into the inter-
active shell, which allows 'caterpillar' and 'category' but blocks anything
else that has the word 'cat' in it:

>>> import pyinputplus as pyip
>>> response = pyip.inputStr(allowRegexes=[r'caterpillar', 'category'],
blockRegexes=[r'cat'])
cat
This response is invalid.
catastrophe
This response is invalid.
category
>>> response
'category'

The PyInputPlus module’s functions can save you from writing tedious
input validation code yourself. But there’s more to the PyInputPlus module
than what has been detailed here. You can examine its full documentation
online at https://pyinputplus.readthedocs.io/.

Passing a Custom Validation Function to inputCustom()
You can write a function to perform your own custom validation logic
by passing the function to inputCustom(). For example, say you want the
user to enter a series of digits that adds up to 10. There is no pyinputplus​
.inputAddsUpToTen() function, but you can create your own function that:

•	 Accepts a single string argument of what the user entered

•	 Raises an exception if the string fails validation

•	 Returns None (or has no return statement) if inputCustom() should return
the string unchanged

•	 Returns a non-None value if inputCustom() should return a different string
from the one the user entered

•	 Is passed as the first argument to inputCustom()

For example, we can create our own addsUpToTen() function, and
then pass it to inputCustom(). Note that the function call looks like
inputCustom(addsUpToTen) and not inputCustom(addsUpToTen()) because we
are passing the addsUpToTen() function itself to inputCustom(), not calling
addsUpToTen() and passing its return value.

>>> import pyinputplus as pyip
>>> def addsUpToTen(numbers):

194 Chapter 8

... numbersList = list(numbers)

... for i, digit in enumerate(numbersList):

... numbersList[i] = int(digit)

... if sum(numbersList) != 10:

... raise Exception('The digits must add up to 10, not %s.' %
(sum(numbersList)))
... return int(numbers) # Return an int form of numbers.
...
>>> response = pyip.inputCustom(addsUpToTen) # No parentheses after
addsUpToTen here.
123
The digits must add up to 10, not 6.
1235
The digits must add up to 10, not 11.
1234
>>> response # inputStr() returned an int, not a string.
1234
>>> response = pyip.inputCustom(addsUpToTen)
hello
invalid literal for int() with base 10: 'h'
55
>>> response

The inputCustom() function also supports the general PyInputPlus fea-
tures, such as the blank, limit, timeout, default, allowRegexes, and blockRegexes
keyword arguments. Writing your own custom validation function is useful
when it’s otherwise difficult or impossible to write a regular expression for
valid input, as in the “adds up to 10” example.

Project: How to Keep an Idiot Busy for Hours
Let’s use PyInputPlus to create a simple program that does the following:

1.	 Ask the user if they’d like to know how to keep an idiot busy for hours.

2.	 If the user answers no, quit.

3.	 If the user answers yes, go to Step 1.

Of course, we don’t know if the user will enter something besides “yes”
or “no,” so we need to perform input validation. It would also be conve-
nient for the user to be able to enter “y” or “n” instead of the full words.
PyInputPlus’s inputYesNo() function will handle this for us and, no matter
what case the user enters, return a lowercase 'yes' or 'no' string value.

When you run this program, it should look like the following:

Want to know how to keep an idiot busy for hours?
sure
'sure' is not a valid yes/no response.
Want to know how to keep an idiot busy for hours?
yes
Want to know how to keep an idiot busy for hours?
y

Input Validation 195

Want to know how to keep an idiot busy for hours?
Yes
Want to know how to keep an idiot busy for hours?
YES
Want to know how to keep an idiot busy for hours?
YES!!!!!!
'YES!!!!!!' is not a valid yes/no response.
Want to know how to keep an idiot busy for hours?
TELL ME HOW TO KEEP AN IDIOT BUSY FOR HOURS.
'TELL ME HOW TO KEEP AN IDIOT BUSY FOR HOURS.' is not a valid yes/no response.
Want to know how to keep an idiot busy for hours?
no
Thank you. Have a nice day.

Open a new file editor tab and save it as idiot.py. Then enter the
following code:

import pyinputplus as pyip

This imports the PyInputPlus module. Since pyinputplus is a bit much
to type, we’ll use the name pyip for short.

while True:
 prompt = 'Want to know how to keep an idiot busy for hours?\n'
 response = pyip.inputYesNo(prompt)

Next, while True: creates an infinite loop that continues to run until it
encounters a break statement. In this loop, we call pyip.inputYesNo() to ensure
that this function call won’t return until the user enters a valid answer.

 if response == 'no':
 break

The pyip.inputYesNo() call is guaranteed to only return either the string
yes or the string no. If it returned no, then our program breaks out of the
infinite loop and continues to the last line, which thanks the user:

print('Thank you. Have a nice day.')

Otherwise, the loop iterates once again.
You can also make use of the inputYesNo() function in non-English lan-

guages by passing yesVal and noVal keyword arguments. For example, the
Spanish version of this program would have these two lines:

 prompt = '¿Quieres saber cómo mantener ocupado a un idiota durante horas?\n'
 response = pyip.inputYesNo(prompt, yesVal='sí', noVal='no')
 if response == 'sí':

Now the user can enter either sí or s (in lower- or uppercase) instead of
yes or y for an affirmative answer.

196 Chapter 8

Project: Multiplication Quiz
PyInputPlus’s features can be useful for creating a timed multiplication
quiz. By setting the allowRegexes, blockRegexes, timeout, and limit keyword
argument to pyip.inputStr(), you can leave most of the implementation to
PyInputPlus. The less code you need to write, the faster you can write your
programs. Let’s create a program that poses 10 multiplication problems to
the user, where the valid input is the problem’s correct answer. Open a new
file editor tab and save the file as multiplicationQuiz.py.

First, we’ll import pyinputplus, random, and time. We’ll keep track of how
many questions the program asks and how many correct answers the user
gives with the variables numberOfQuestions and correctAnswers. A for loop will
repeatedly pose a random multiplication problem 10 times:

import pyinputplus as pyip
import random, time

numberOfQuestions = 10
correctAnswers = 0
for questionNumber in range(numberOfQuestions):

Inside the for loop, the program will pick two single-digit numbers to
multiply. We’ll use these numbers to create a #Q: N × N = prompt for the
user, where Q is the question number (1 to 10) and N are the two numbers to
multiply.

 # Pick two random numbers:
 num1 = random.randint(0, 9)
 num2 = random.randint(0, 9)

 prompt = '#%s: %s x %s = ' % (questionNumber, num1, num2)

The pyip.inputStr() function will handle most of the features of this
quiz program. The argument we pass for allowRegexes is a list with the regex
string '^%s$', where %s is replaced with the correct answer. The ^ and %
characters ensure that the answer begins and ends with the correct num-
ber, though PyInputPlus trims any whitespace from the start and end of
the user’s response first just in case they inadvertently pressed the spacebar
before or after their answer. The argument we pass for blocklistRegexes is
a list with ('.*', 'Incorrect!'). The first string in the tuple is a regex that
matches every possible string. Therefore, if the user response doesn’t match
the correct answer, the program will reject any other answer they provide.
In that case, the 'Incorrect!' string is displayed and the user is prompted to
answer again. Additionally, passing 8 for timeout and 3 for limit will ensure
that the user only has 8 seconds and 3 tries to provide a correct answer:

 try:
 # Right answers are handled by allowRegexes.
 # Wrong answers are handled by blockRegexes, with a custom message.
 pyip.inputStr(prompt, allowRegexes=['^%s$' % (num1 * num2)],

Input Validation 197

 blockRegexes=[('.*', 'Incorrect!')],
 timeout=8, limit=3)

If the user answers after the 8-second timeout has expired, even if they
answer correctly, pyip.inputStr() raises a TimeoutException exception. If the
user answers incorrectly more than 3 times, it raises a RetryLimitException
exception. Both of these exception types are in the PyInputPlus module,
so pyip. needs to prepend them:

 except pyip.TimeoutException:
 print('Out of time!')
 except pyip.RetryLimitException:
 print('Out of tries!')

Remember that, just like how else blocks can follow an if or elif block,
they can optionally follow the last except block. The code inside the follow-
ing else block will run if no exception was raised in the try block. In our
case, that means the code runs if the user entered the correct answer:

 else:
 # This block runs if no exceptions were raised in the try block.
 print('Correct!')
 correctAnswers += 1

No matter which of the three messages, “Out of time!”, “Out of tries!”,
or “Correct!”, displays, let’s place a 1-second pause at the end of the for loop
to give the user time to read it. After the program has asked 10 questions
and the for loop continues, let’s show the user how many correct answers
they made:

 time.sleep(1) # Brief pause to let user see the result.
print('Score: %s / %s' % (correctAnswers, numberOfQuestions))

PyInputPlus is flexible enough that you can use it in a wide variety
of programs that take keyboard input from the user, as demonstrated by
the programs in this chapter.

Summary
It’s easy to forget to write input validation code, but without it, your pro-
grams will almost certainly have bugs. The values you expect users to
enter and the values they actually enter can be completely different, and
your programs need to be robust enough to handle these exceptional
cases. You can use regular expressions to create your own input validation
code, but for common cases, it’s easier to use an existing module, such as
PyInputPlus. You can import the module with import pyinputplus as pyip so
that you can enter a shorter name when calling the module’s functions.

PyInputPlus has functions for entering a variety of input, including
strings, numbers, dates, yes/no, True/False, emails, and files. While input()

198 Chapter 8

always returns a string, these functions return the value in an appropri-
ate data type. The inputChoice() function allow you to select one of several
pre-selected options, while inputMenu() also adds numbers or letters for
quick selection.

All of these functions have the following standard features: stripping
whitespace from the sides, setting timeout and retry limits with the timeout
and limit keyword arguments, and passing lists of regular expression strings
to allowRegexes or blockRegexes to include or exclude particular responses.
You'll no longer need to write your own tedious while loops that check for
valid input and reprompt the user.

If none of the PyInputPlus module’s, functions fit your needs, but
you’d still like the other features that PyInputPlus provides, you can call
inputCustom() and pass your own custom validation function for PyInputPlus
to use. The documentation at https://pyinputplus.readthedocs.io/en/latest/ has a
complete listing of PyInputPlus’s functions and additional features. There’s
far more in the PyInputPlus online documentation than what was described
in this chapter. There’s no use in reinventing the wheel, and learning to use
this module will save you from having to write and debug code for yourself.

Now that you have expertise manipulating and validating text, it’s time
to learn how to read from and write to files on your computer’s hard drive.

Practice Questions

1.	 Does PyInputPlus come with the Python Standard Library?

2.	 Why is PyInputPlus commonly imported with import pyinputplus as pyip?

3.	 What is the difference between inputInt() and inputFloat()?

4.	 How can you ensure that the user enters a whole number between 0 and
99 using PyInputPlus?

5.	 What is passed to the allowRegexes and blockRegexes keyword arguments?

6.	 What does inputStr(limit=3) do if blank input is entered three times?

7.	 What does inputStr(limit=3, default='hello') do if blank input is entered
three times?

Practice Projects
For practice, write programs to do the following tasks.

Sandwich Maker
Write a program that asks users for their sandwich preferences. The pro-
gram should use PyInputPlus to ensure that they enter valid input, such as:

•	 Using inputMenu() for a bread type: wheat, white, or sourdough.

•	 Using inputMenu() for a protein type: chicken, turkey, ham, or tofu.

Input Validation 199

•	 Using inputYesNo() to ask if they want cheese.

•	 If so, using inputMenu() to ask for a cheese type: cheddar, Swiss,
or mozzarella.

•	 Using inputYesNo() to ask if they want mayo, mustard, lettuce, or tomato.

•	 Using inputInt() to ask how many sandwiches they want. Make sure this
number is 1 or more.

Come up with prices for each of these options, and have your program
display a total cost after the user enters their selection.

Write Your Own Multiplication Quiz
To see how much PyInputPlus is doing for you, try re-creating the multipli-
cation quiz project on your own without importing it. This program will
prompt the user with 10 multiplication questions, ranging from 0 × 0 to
9 × 9. You’ll need to implement the following features:

•	 If the user enters the correct answer, the program displays “Correct!”
for 1 second and moves on to the next question.

•	 The user gets three tries to enter the correct answer before the
program moves on to the next question.

•	 Eight seconds after first displaying the question, the question is
marked as incorrect even if the user enters the correct answer after
the 8-second limit.

Compare your code to the code using PyInputPlus in “Project:
Multiplication Quiz” on page 196.

9
R E A D I N G A N D W R I T I N G F I L E S

Variables are a fine way to store data while
your program is running, but if you want

your data to persist even after your program
has finished, you need to save it to a file. You

can think of a file’s contents as a single string value,
potentially gigabytes in size. In this chapter, you will
learn how to use Python to create, read, and save files
on the hard drive.

Files and File Paths
A file has two key properties: a filename (usually written as one word) and a
path. The path specifies the location of a file on the computer. For example,
there is a file on my Windows laptop with the filename project.docx in the
path C:\Users\Al\Documents. The part of the filename after the last period is
called the file’s extension and tells you a file’s type. The filename project.docx

202 Chapter 9

is a Word document, and Users, Al, and Documents all refer to folders (also
called directories). Folders can contain files and other folders. For example,
project.docx is in the Documents folder, which is inside the Al folder, which is
inside the Users folder. Figure 9-1 shows this folder organization.

Users

C:\

AI

Documents

project.docx

Figure 9-1: A file in a hierarchy of folders

The C:\ part of the path is the root folder, which contains all other fold-
ers. On Windows, the root folder is named C:\  and is also called the C:
drive. On macOS and Linux, the root folder is /. In this book, I’ll use the
Windows-style root folder, C:\ . If you are entering the interactive shell
examples on macOS or Linux, enter / instead.

Additional volumes, such as a DVD drive or USB flash drive, will appear
differently on different operating systems. On Windows, they appear as new,
lettered root drives, such as D:\ or E:\ . On macOS, they appear as new folders
under the /Volumes folder. On Linux, they appear as new folders under the
/mnt (“mount”) folder. Also note that while folder names and filenames are
not case-sensitive on Windows and macOS, they are case-sensitive on Linux.

N O T E 	 Since your system probably has different files and folders on it than mine, you won’t
be able to follow every example in this chapter exactly. Still, try to follow along using
folders that exist on your computer.

Backslash on Windows and Forward Slash on macOS and Linux
On Windows, paths are written using backslashes (\) as the separator between
folder names. The macOS and Linux operating systems, however, use the
forward slash (/) as their path separator. If you want your programs to
work on all operating systems, you will have to write your Python scripts
to handle both cases.

Fortunately, this is simple to do with the Path() function in the pathlib
module. If you pass it the string values of individual file and folder names in
your path, Path() will return a string with a file path using the correct path
separators. Enter the following into the interactive shell:

>>> from pathlib import Path
>>> Path('spam', 'bacon', 'eggs')

WindowsPath('spam/bacon/eggs')

Reading and Writing Files 203

>>> str(Path('spam', 'bacon', 'eggs'))
'spam\\bacon\\eggs'

Note that the convention for importing pathlib is to run from pathlib
import Path, since otherwise we’d have to enter pathlib.Path everywhere
Path shows up in our code. Not only is this extra typing redundant, but
it’s also redundant.

I’m running this chapter’s interactive shell examples on Windows, so
Path('spam', 'bacon', 'eggs') returned a WindowsPath object for the joined
path, represented as WindowsPath('spam/bacon/eggs'). Even though Windows
uses backslashes, the WindowsPath representation in the interactive shell dis-
plays them using forward slashes, since open source software developers
have historically favored the Linux operating system.

If you want to get a simple text string of this path, you can pass it
to the str() function, which in our example returns 'spam\\bacon\\eggs'.
(Notice that the backslashes are doubled because each backslash needs to
be escaped by another backslash character.) If I had called this function on,
say, Linux, Path() would have returned a PosixPath object that, when passed
to str(), would have returned 'spam/bacon/eggs'. (POSIX is a set of standards
for Unix-like operating systems such as Linux.)

These Path objects (really, WindowsPath or PosixPath objects, depending on
your operating system) will be passed to several of the file-related functions
introduced in this chapter. For example, the following code joins names
from a list of filenames to the end of a folder’s name:

>>> from pathlib import Path
>>> myFiles = ['accounts.txt', 'details.csv', 'invite.docx']
>>> for filename in myFiles:
 print(Path(r'C:\Users\Al', filename))
C:\Users\Al\accounts.txt
C:\Users\Al\details.csv
C:\Users\Al\invite.docx

On Windows, the backslash separates directories, so you can’t use it
in filenames. However, you can use backslashes in filenames on macOS
and Linux. So while Path(r'spam\eggs') refers to two separate folders (or
a file eggs in a folder spam) on Windows, the same command would refer
to a single folder (or file) named spam\eggs on macOS and Linux. For this
reason, it’s usually a good idea to always use forward slashes in your Python
code (and I’ll be doing so for the rest of this chapter). The pathlib module
will ensure that it always works on all operating systems.

Note that pathlib was introduced in Python 3.4 to replace older os.path
functions. The Python Standard Library modules support it as of Python 3.6,
but if you are working with legacy Python 2 versions, I recommend using
pathlib2, which gives you pathlib’s features on Python 2.7. Appendix A has
instructions for installing pathlib2 using pip. Whenever I’ve replaced an older
os.path function with pathlib, I’ve made a short note. You can look up the
older functions at https://docs.python.org/3/library/os.path.html.

https://docs.python.org/3/library/os.path.html

204 Chapter 9

Using the / Operator to Join Paths
We normally use the + operator to add two integer or floating-point
numbers, such as in the expression 2 + 2, which evaluates to the integer
value 4. But we can also use the + operator to concatenate two string values,
like the expression 'Hello' + 'World', which evaluates to the string value
'HelloWorld'. Similarly, the / operator that we normally use for division can
also combine Path objects and strings. This is helpful for modifying a Path
object after you’ve already created it with the Path() function.

For example, enter the following into the interactive shell:

>>> from pathlib import Path
>>> Path('spam') / 'bacon' / 'eggs'
WindowsPath('spam/bacon/eggs')
>>> Path('spam') / Path('bacon/eggs')
WindowsPath('spam/bacon/eggs')
>>> Path('spam') / Path('bacon', 'eggs')
WindowsPath('spam/bacon/eggs')

Using the / operator with Path objects makes joining paths just as easy
as string concatenation. It’s also safer than using string concatenation or
the join() method, like we do in this example:

>>> homeFolder = r'C:\Users\Al'
>>> subFolder = 'spam'
>>> homeFolder + '\\' + subFolder
'C:\\Users\\Al\\spam'
>>> '\\'.join([homeFolder, subFolder])
'C:\\Users\\Al\\spam'

A script that uses this code isn’t safe, because its backslashes would only
work on Windows. You could add an if statement that checks sys.platform
(which contains a string describing the computer’s operating system) to
decide what kind of slash to use, but applying this custom code everywhere
it’s needed can be inconsistent and bug-prone.

The pathlib module solves these problems by reusing the / math divi-
sion operator to join paths correctly, no matter what operating system your
code is running on. The following example uses this strategy to join the
same paths as in the previous example:

>>> homeFolder = Path('C:/Users/Al')
>>> subFolder = Path('spam')
>>> homeFolder / subFolder
WindowsPath('C:/Users/Al/spam')
>>> str(homeFolder / subFolder)
'C:\\Users\\Al\\spam'

The only thing you need to keep in mind when using the / operator
for joining paths is that one of the first two values must be a Path object.

Reading and Writing Files 205

Python will give you an error if you try entering the following into the
interactive shell:

>>> 'spam' / 'bacon' / 'eggs'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: 'str' and 'str'

Python evaluates the / operator from left to right and evaluates to a
Path object, so either the first or second leftmost value must be a Path object
for the entire expression to evaluate to a Path object. Here’s how the / oper-
ator and a Path object evaluate to the final Path object.

WindowsPath('spam/bacon')/'eggs'/'ham'

Path('spam)/'bacon' /'eggs'/'ham'

WindowsPath('spam/bacon/eggs') /'ham'

WindowsPath('spam/bacon/eggs/ham')

If you see the TypeError: unsupported operand type(s) for /: 'str' and
'str' error message shown previously, you need to put a Path object on the
left side of the expression.

The / operator replaces the older os.path.join() function, which you
can learn more about from https://docs.python.org/3/library/os.path.html#os
.path.join.

The Current Working Directory
Every program that runs on your computer has a current working directory,
or cwd. Any filenames or paths that do not begin with the root folder are
assumed to be under the current working directory.

N O T E 	 While folder is the more modern name for directory, note that current work-
ing directory (or just working directory) is the standard term, not “current
working folder.”

You can get the current working directory as a string value with the
Path.cwd() function and change it using os.chdir(). Enter the following into
the interactive shell:

>>> from pathlib import Path
>>> import os
>>> Path.cwd()
WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37')'
>>> os.chdir('C:\\Windows\\System32')
>>> Path.cwd()
WindowsPath('C:/Windows/System32')

https://docs.python.org/3/library/os.path.html#os.path.join
https://docs.python.org/3/library/os.path.html#os.path.join

206 Chapter 9

Here, the current working directory is set to C:\Users\Al\AppData\Local​
\Programs\Python\Python37, so the filename project.docx refers to C:\Users\Al​
\AppData\Local\Programs\Python\Python37\project.docx. When we change the
current working directory to C:\Windows\System32, the filename project.docx
is interpreted as C:\Windows\System32\project.docx.

Python will display an error if you try to change to a directory that does
not exist.

>>> os.chdir('C:/ThisFolderDoesNotExist')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FileNotFoundError: [WinError 2] The system cannot find the file specified:
'C:/ThisFolderDoesNotExist'

There is no pathlib function for changing the working directory,
because changing the current working directory while a program is run-
ning can often lead to subtle bugs.

The os.getcwd() function is the older way of getting the current working
directory as a string.

The Home Directory
All users have a folder for their own files on the computer called the home
directory or home folder. You can get a Path object of the home folder by call-
ing Path.home():

>>> Path.home()
WindowsPath('C:/Users/Al')

The home directories are located in a set place depending on your
operating system:

•	 On Windows, home directories are under C:\Users.

•	 On Mac, home directories are under /Users.

•	 On Linux, home directories are often under /home.

Your scripts will almost certainly have permissions to read and write the
files under your home directory, so it’s an ideal place to put the files that
your Python programs will work with.

Absolute vs. Relative Paths
There are two ways to specify a file path:

•	 An absolute path, which always begins with the root folder

•	 A relative path, which is relative to the program’s current working directory

There are also the dot (.) and dot-dot (..) folders. These are not real
folders but special names that can be used in a path. A single period

Reading and Writing Files 207

(“dot”) for a folder name is shorthand for “this directory.” Two periods
(“dot-dot”) means “the parent folder.”

Figure 9-2 is an example of some folders and files. When the current
working directory is set to C:\bacon, the relative paths for the other folders
and files are set as they are in the figure.

bacon

C:\

fizz

spam.txt

spam.txt

eggs

spam.txt

spam.txt

Current
working
directory

Relative paths

.\

..\

.\fizz

.\fizz\spam.txt

.\spam.txt

..\eggs

..\eggs\spam.txt

..\spam.txt

Absolute paths

C:\bacon

C:\

C:\bacon\fizz

C:\bacon\fizz\spam.txt

C:\bacon\spam.txt

C:\eggs

C:\eggs\spam.txt

C:\spam.txt

Figure 9-2: The relative paths for folders and files in the working directory C:\bacon

The .\ at the start of a relative path is optional. For example, .\spam.txt
and spam.txt refer to the same file.

Creating New Folders Using the os.makedirs() Function
Your programs can create new folders (directories) with the os.makedirs()
function. Enter the following into the interactive shell:

>>> import os
>>> os.makedirs('C:\\delicious\\walnut\\waffles')

This will create not just the C:\delicious folder but also a walnut folder
inside C:\delicious and a waffles folder inside C:\delicious\walnut. That is,
os.makedirs() will create any necessary intermediate folders in order to
ensure that the full path exists. Figure 9-3 shows this hierarchy of folders.

delicious

C:\

walnut

waffles

Figure 9-3: The result of os.makedirs('C:\\delicious\\walnut\\waffles')

208 Chapter 9

To make a directory from a Path object, call the mkdir() method. For
example, this code will create a spam folder under the home folder on
my computer:

>>> from pathlib import Path
>>> Path(r'C:\Users\Al\spam').mkdir()

Note that mkdir() can only make one directory at a time; it won’t make
several subdirectories at once like os.makedirs().

Handling Absolute and Relative Paths
The pathlib module provides methods for checking whether a given path
is an absolute path and returning the absolute path of a relative path.

Calling the is_absolute() method on a Path object will return True if
it represents an absolute path or False if it represents a relative path. For
example, enter the following into the interactive shell, using your own files
and folders instead of the exact ones listed here:

>>> Path.cwd()
WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37')
>>> Path.cwd().is_absolute()
True
>>> Path('spam/bacon/eggs').is_absolute()
False

To get an absolute path from a relative path, you can put Path.cwd() /
in front of the relative Path object. After all, when we say “relative path,” we
almost always mean a path that is relative to the current working directory.
Enter the following into the interactive shell:

>>> Path('my/relative/path')
WindowsPath('my/relative/path')
>>> Path.cwd() / Path('my/relative/path')
WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37/my/relative/
path')

If your relative path is relative to another path besides the current work-
ing directory, just replace Path.cwd() with that other path instead. The fol-
lowing example gets an absolute path using the home directory instead of
the current working directory:

>>> Path('my/relative/path')
WindowsPath('my/relative/path')
>>> Path.home() / Path('my/relative/path')
WindowsPath('C:/Users/Al/my/relative/path')

Reading and Writing Files 209

The os.path module also has some useful functions related to absolute
and relative paths:

•	 Calling os.path.abspath(path) will return a string of the absolute path
of the argument. This is an easy way to convert a relative path into an
absolute one.

•	 Calling os.path.isabs(path) will return True if the argument is an abso-
lute path and False if it is a relative path.

•	 Calling os.path.relpath(path, start) will return a string of a relative path
from the start path to path. If start is not provided, the current working
directory is used as the start path.

Try these functions in the interactive shell:

>>> os.path.abspath('.')

'C:\\Users\\Al\\AppData\\Local\\Programs\\Python\\Python37'
>>> os.path.abspath('.\\Scripts')
'C:\\Users\\Al\\AppData\\Local\\Programs\\Python\\Python37\\Scripts'
>>> os.path.isabs('.')
False
>>> os.path.isabs(os.path.abspath('.'))
True

Since C:\Users\Al\AppData\Local\Programs\Python\Python37 was the working
directory when os.path.abspath() was called, the “single-dot” folder represents
the absolute path 'C:\\Users\\Al\\AppData\\Local\\Programs\\Python\\Python37'.

Enter the following calls to os.path.relpath() into the interactive shell:

>>> os.path.relpath('C:\\Windows', 'C:\\')
'Windows'
>>> os.path.relpath('C:\\Windows', 'C:\\spam\\eggs')
'..\\..\\Windows'

When the relative path is within the same parent folder as the path, but
is within subfolders of a different path, such as 'C:\\Windows' and 'C:\\spam​
\\eggs', you can use the “dot-dot” notation to return to the parent folder.

Getting the Parts of a File Path
Given a Path object, you can extract the file path’s different parts as strings
using several Path object attributes. These can be useful for constructing
new file paths based on existing ones. The attributes are diagrammed in
Figure 9-4.

210 Chapter 9

C:\Users\Al\spam.txt

Parent Name

/home/al/spam.txt

Anchor

Drive
Stem Suffix

Parent NameAnchor

Figure 9-4: The parts of a Windows (top)
and macOS/Linux (bottom) file path

The parts of a file path include the following:

•	 The anchor, which is the root folder of the filesystem

•	 On Windows, the drive, which is the single letter that often denotes
a physical hard drive or other storage device

•	 The parent, which is the folder that contains the file

•	 The name of the file, made up of the stem (or base name) and the
suffix (or extension)

Note that Windows Path objects have a drive attribute, but macOS
and Linux Path objects don’t. The drive attribute doesn’t include the
first backslash.

To extract each attribute from the file path, enter the following into
the interactive shell:

>>> p = Path('C:/Users/Al/spam.txt')
>>> p.anchor
'C:\\'
>>> p.parent # This is a Path object, not a string.
WindowsPath('C:/Users/Al')
>>> p.name
'spam.txt'
>>> p.stem
'spam'
>>> p.suffix
'.txt'
>>> p.drive
'C:'

These attributes evaluate to simple string values, except for parent,
which evaluates to another Path object.

Reading and Writing Files 211

The parents attribute (which is different from the parent attribute) eval-
uates to the ancestor folders of a Path object with an integer index:

>>> Path.cwd()
WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37')
>>> Path.cwd().parents[0]
WindowsPath('C:/Users/Al/AppData/Local/Programs/Python')
>>> Path.cwd().parents[1]
WindowsPath('C:/Users/Al/AppData/Local/Programs')
>>> Path.cwd().parents[2]
WindowsPath('C:/Users/Al/AppData/Local')
>>> Path.cwd().parents[3]
WindowsPath('C:/Users/Al/AppData')
>>> Path.cwd().parents[4]
WindowsPath('C:/Users/Al')
>>> Path.cwd().parents[5]
WindowsPath('C:/Users')
>>> Path.cwd().parents[6]
WindowsPath('C:/')

The older os.path module also has similar functions for getting the dif-
ferent parts of a path written in a string value. Calling os.path.dirname(path)
will return a string of everything that comes before the last slash in the path
argument. Calling os.path.basename(path) will return a string of everything
that comes after the last slash in the path argument. The directory (or dir)
name and base name of a path are outlined in Figure 9-5.

C:\Windows\System32\calc.exe

Dir name Base name

Figure 9-5: The base name follows the last slash in
a path and is the same as the filename. The dir name
is everything before the last slash.

For example, enter the following into the interactive shell:

>>> calcFilePath = 'C:\\Windows\\System32\\calc.exe'
>>> os.path.basename(calcFilePath)
'calc.exe'
>>> os.path.dirname(calcFilePath)
'C:\\Windows\\System32'

If you need a path’s dir name and base name together, you can just call
os.path.split() to get a tuple value with these two strings, like so:

>>> calcFilePath = 'C:\\Windows\\System32\\calc.exe'
>>> os.path.split(calcFilePath)
('C:\\Windows\\System32', 'calc.exe')

212 Chapter 9

Notice that you could create the same tuple by calling os.path.dirname()
and os.path.basename() and placing their return values in a tuple:

>>> (os.path.dirname(calcFilePath), os.path.basename(calcFilePath))
('C:\\Windows\\System32', 'calc.exe')

But os.path.split() is a nice shortcut if you need both values.
Also, note that os.path.split() does not take a file path and return a list

of strings of each folder. For that, use the split() string method and split on
the string in os.sep. (Note that sep is in os, not os.path.) The os.sep variable
is set to the correct folder-separating slash for the computer running the
program, '\\' on Windows and '/' on macOS and Linux, and splitting on
it will return a list of the individual folders.

For example, enter the following into the interactive shell:

>>> calcFilePath.split(os.sep)
['C:', 'Windows', 'System32', 'calc.exe']

This returns all the parts of the path as strings.
On macOS and Linux systems, the returned list of folders will begin

with a blank string, like this:

>>> '/usr/bin'.split(os. sep)
['', 'usr', 'bin']

The split() string method will work to return a list of each part of
the path.

Finding File Sizes and Folder Contents
Once you have ways of handling file paths, you can then start gathering
information about specific files and folders. The os.path module provides
functions for finding the size of a file in bytes and the files and folders
inside a given folder.

•	 Calling os.path.getsize(path) will return the size in bytes of the file in
the path argument.

•	 Calling os.listdir(path) will return a list of filename strings for each file
in the path argument. (Note that this function is in the os module, not
os.path.)

Here’s what I get when I try these functions in the interactive shell:

>>> os.path.getsize('C:\\Windows\\System32\\calc.exe')
27648
>>> os.listdir('C:\\Windows\\System32')
['0409', '12520437.cpx', '12520850.cpx', '5U877.ax', 'aaclient.dll',
--snip--
'xwtpdui.dll', 'xwtpw32.dll', 'zh-CN', 'zh-HK', 'zh-TW', 'zipfldr.dll']

Reading and Writing Files 213

As you can see, the calc.exe program on my computer is 27,648 bytes
in size, and I have a lot of files in C:\Windows\system32. If I want to find the
total size of all the files in this directory, I can use os.path.getsize() and
os.listdir() together.

>>> totalSize = 0
>>> for filename in os.listdir('C:\\Windows\\System32'):
 totalSize = totalSize + os.path.getsize(os.path.join('C:\\Windows\\System32', filename))
>>> print(totalSize)
2559970473

As I loop over each filename in the C:\Windows\System32 folder, the
totalSize variable is incremented by the size of each file. Notice how when
I call os.path.getsize(), I use os.path.join() to join the folder name with the
current filename. The integer that os.path.getsize() returns is added to the
value of totalSize. After looping through all the files, I print totalSize to see
the total size of the C:\Windows\System32 folder.

Modifying a List of Files Using Glob Patterns
If you want to work on specific files, the glob() method is simpler to use
than listdir(). Path objects have a glob() method for listing the contents of
a folder according to a glob pattern. Glob patterns are like a simplified form
of regular expressions often used in command line commands. The glob()
method returns a generator object (which are beyond the scope of this
book) that you’ll need to pass to list() to easily view in the interactive shell:

>>> p = Path('C:/Users/Al/Desktop')
>>> p.glob('*')
<generator object Path.glob at 0x000002A6E389DED0>
>>> list(p.glob('*')) # Make a list from the generator.
[WindowsPath('C:/Users/Al/Desktop/1.png'), WindowsPath('C:/Users/Al/
Desktop/22-ap.pdf'), WindowsPath('C:/Users/Al/Desktop/cat.jpg'),
 --snip--
WindowsPath('C:/Users/Al/Desktop/zzz.txt')]

The asterisk (*) stands for “multiple of any characters,” so p.glob('*')
returns a generator of all files in the path stored in p.

Like with regexes, you can create complex expressions:

>>> list(p.glob('*.txt') # Lists all text files.
[WindowsPath('C:/Users/Al/Desktop/foo.txt'),
 --snip--
WindowsPath('C:/Users/Al/Desktop/zzz.txt')]

The glob pattern '*.txt' will return files that start with any combina-
tion of characters as long as it ends with the string '.txt', which is the text
file extension.

214 Chapter 9

In contrast with the asterisk, the question mark (?) stands for any
single character:

>>> list(p.glob('project?.docx')
[WindowsPath('C:/Users/Al/Desktop/project1.docx'), WindowsPath('C:/Users/Al/
Desktop/project2.docx'),
 --snip--
WindowsPath('C:/Users/Al/Desktop/project9.docx')]

The glob expression 'project?.docx' will return 'project1.docx' or
'project5.docx', but it will not return 'project10.docx', because ? only
matches to one character—so it will not match to the two-character
string '10'.

Finally, you can also combine the asterisk and question mark to create
even more complex glob expressions, like this:

>>> list(p.glob('*.?x?')
[WindowsPath('C:/Users/Al/Desktop/calc.exe'), WindowsPath('C:/Users/Al/
Desktop/foo.txt'),
 --snip--
WindowsPath('C:/Users/Al/Desktop/zzz.txt')]

The glob expression '*.?x?' will return files with any name and any
three-character extension where the middle character is an 'x'.

By picking out files with specific attributes, the glob() method lets you
easily specify the files in a directory you want to perform some operation on.
You can use a for loop to iterate over the generator that glob() returns:

>>> p = Path('C:/Users/Al/Desktop')
>>> for textFilePathObj in p.glob('*.txt'):
... print(textFilePathObj) # Prints the Path object as a string.
... # Do something with the text file.
...
C:\Users\Al\Desktop\foo.txt
C:\Users\Al\Desktop\spam.txt
C:\Users\Al\Desktop\zzz.txt

If you want to perform some operation on every file in a directory, you
can use either os.listdir(p) or p.glob('*').

Checking Path Validity
Many Python functions will crash with an error if you supply them with
a path that does not exist. Luckily, Path objects have methods to check
whether a given path exists and whether it is a file or folder. Assuming
that a variable p holds a Path object, you could expect the following:

•	 Calling p.exists() returns True if the path exists or returns False if it
doesn’t exist.

•	 Calling p.is_file() returns True if the path exists and is a file, or returns
False otherwise.

Reading and Writing Files 215

•	 Calling p.is_dir() returns True if the path exists and is a directory, or
returns False otherwise.

On my computer, here’s what I get when I try these methods in the
interactive shell:

>>> winDir = Path('C:/Windows')
>>> notExistsDir = Path('C:/This/Folder/Does/Not/Exist')
>>> calcFile = Path('C:/Windows
/System32/calc.exe')
>>> winDir.exists()
True
>>> winDir.is_dir()
True
>>> notExistsDir.exists()
False
>>> calcFile.is_file()
True
>>> calcFile.is_dir()
False

You can determine whether there is a DVD or flash drive currently
attached to the computer by checking for it with the exists() method. For
instance, if I wanted to check for a flash drive with the volume named D:\
on my Windows computer, I could do that with the following:

>>> dDrive = Path('D:/')
>>> dDrive.exists()
False

Oops! It looks like I forgot to plug in my flash drive.
The older os.path module can accomplish the same task with the

os.path.exists(path), os.path.isfile(path), and os.path.isdir(path) functions,
which act just like their Path function counterparts. As of Python 3.6, these
functions can accept Path objects as well as strings of the file paths.

The File Reading/Writing Process
Once you are comfortable working with folders and relative paths, you’ll
be able to specify the location of files to read and write. The functions
covered in the next few sections will apply to plaintext files. Plaintext files
contain only basic text characters and do not include font, size, or color
information. Text files with the .txt extension or Python script files with
the .py extension are examples of plaintext files. These can be opened with
Windows’s Notepad or macOS’s TextEdit application. Your programs can
easily read the contents of plaintext files and treat them as an ordinary
string value.

Binary files are all other file types, such as word processing documents,
PDFs, images, spreadsheets, and executable programs. If you open a binary

216 Chapter 9

file in Notepad or TextEdit, it will look like scrambled nonsense, like in
Figure 9-6.

Figure 9-6: The Windows calc.exe program opened in Notepad

Since every different type of binary file must be handled in its own
way, this book will not go into reading and writing raw binary files directly.
Fortunately, many modules make working with binary files easier—you
will explore one of them, the shelve module, later in this chapter. The
pathlib module’s read_text() method returns a string of the full contents
of a text file. Its write_text() method creates a new text file (or overwrites
an existing one) with the string passed to it. Enter the following into the
interactive shell:

>>> from pathlib import Path
>>> p = Path('spam.txt')
>>> p.write_text('Hello, world!')
13
>>> p.read_text()
'Hello, world!'

These method calls create a spam.txt file with the content 'Hello, world!'.
The 13 that write_text() returns indicates that 13 characters were written
to the file. (You can often disregard this information.) The read_text() call
reads and returns the contents of our new file as a string: 'Hello, world!'.

Keep in mind that these Path object methods only provide basic interac-
tions with files. The more common way of writing to a file involves using the
open() function and file objects. There are three steps to reading or writing
files in Python:

1.	 Call the open() function to return a File object.

2.	 Call the read() or write() method on the File object.

3.	 Close the file by calling the close() method on the File object.

We’ll go over these steps in the following sections.

Reading and Writing Files 217

Opening Files with the open() Function
To open a file with the open() function, you pass it a string path indicating
the file you want to open; it can be either an absolute or relative path. The
open() function returns a File object.

Try it by creating a text file named hello.txt using Notepad or TextEdit.
Type Hello, world! as the content of this text file and save it in your user
home folder. Then enter the following into the interactive shell:

>>> helloFile = open(Path.home() / 'hello.txt')

The open() function can also accept strings. If you’re using Windows,
enter the following into the interactive shell:

>>> helloFile = open('C:\\Users\\your_home_folder\\hello.txt')

If you’re using macOS, enter the following into the interactive shell
instead:

>>> helloFile = open('/Users/your_home_folder/hello.txt')

Make sure to replace your_home_folder with your computer username.
For example, my username is Al, so I’d enter 'C:\\Users\\Al\\hello.txt'
on Windows. Note that the open() function only accepts Path objects as of
Python 3.6. In previous versions, you always need to pass a string to open().

Both these commands will open the file in “reading plaintext” mode,
or read mode for short. When a file is opened in read mode, Python lets you
only read data from the file; you can’t write or modify it in any way. Read
mode is the default mode for files you open in Python. But if you don’t want
to rely on Python’s defaults, you can explicitly specify the mode by passing
the string value 'r' as a second argument to open(). So open('/Users/Al/hello​
.txt', 'r') and open('/Users/Al/hello.txt') do the same thing.

The call to open() returns a File object. A File object represents a file on
your computer; it is simply another type of value in Python, much like the
lists and dictionaries you’re already familiar with. In the previous example,
you stored the File object in the variable helloFile. Now, whenever you want
to read from or write to the file, you can do so by calling methods on the
File object in helloFile.

Reading the Contents of Files
Now that you have a File object, you can start reading from it. If you want to
read the entire contents of a file as a string value, use the File object’s read()
method. Let’s continue with the hello.txt File object you stored in helloFile.
Enter the following into the interactive shell:

>>> helloContent = helloFile.read()
>>> helloContent
'Hello, world!'

218 Chapter 9

If you think of the contents of a file as a single large string value, the
read() method returns the string that is stored in the file.

Alternatively, you can use the readlines() method to get a list of string
values from the file, one string for each line of text. For example, create a
file named sonnet29.txt in the same directory as hello.txt and write the follow-
ing text in it:

When, in disgrace with fortune and men's eyes,
I all alone beweep my outcast state,
And trouble deaf heaven with my bootless cries,
And look upon myself and curse my fate,

Make sure to separate the four lines with line breaks. Then enter the
following into the interactive shell:

>>> sonnetFile = open(Path.home() / 'sonnet29.txt')
>>> sonnetFile.readlines()
[When, in disgrace with fortune and men's eyes,\n', ' I all alone beweep my
outcast state,\n', And trouble deaf heaven with my bootless cries,\n', And
look upon myself and curse my fate,']

Note that, except for the last line of the file, each of the string values
ends with a newline character \n. A list of strings is often easier to work with
than a single large string value.

Writing to Files
Python allows you to write content to a file in a way similar to how the print()
function “writes” strings to the screen. You can’t write to a file you’ve opened
in read mode, though. Instead, you need to open it in “write plaintext” mode
or “append plaintext” mode, or write mode and append mode for short.

Write mode will overwrite the existing file and start from scratch, just
like when you overwrite a variable’s value with a new value. Pass 'w' as the
second argument to open() to open the file in write mode. Append mode,
on the other hand, will append text to the end of the existing file. You can
think of this as appending to a list in a variable, rather than overwriting the
variable altogether. Pass 'a' as the second argument to open() to open the
file in append mode.

If the filename passed to open() does not exist, both write and append
mode will create a new, blank file. After reading or writing a file, call the
close() method before opening the file again.

Let’s put these concepts together. Enter the following into the interac-
tive shell:

>>> baconFile = open('bacon.txt', 'w')
>>> baconFile.write('Hello, world!\n')
13
>>> baconFile.close()
>>> baconFile = open('bacon.txt', 'a')
>>> baconFile.write('Bacon is not a vegetable.')

Reading and Writing Files 219

25
>>> baconFile.close()
>>> baconFile = open('bacon.txt')
>>> content = baconFile.read()
>>> baconFile.close()
>>> print(content)
Hello, world!
Bacon is not a vegetable.

First, we open bacon.txt in write mode. Since there isn’t a bacon.txt yet,
Python creates one. Calling write() on the opened file and passing write()
the string argument 'Hello, world! /n' writes the string to the file and
returns the number of characters written, including the newline. Then
we close the file.

To add text to the existing contents of the file instead of replacing the
string we just wrote, we open the file in append mode. We write 'Bacon is
not a vegetable.' to the file and close it. Finally, to print the file contents to
the screen, we open the file in its default read mode, call read(), store the
resulting File object in content, close the file, and print content.

Note that the write() method does not automatically add a newline
character to the end of the string like the print() function does. You will
have to add this character yourself.

As of Python 3.6, you can also pass a Path object to the open() function
instead of a string for the filename.

Saving Variables with the shelve Module
You can save variables in your Python programs to binary shelf files using
the shelve module. This way, your program can restore data to variables
from the hard drive. The shelve module will let you add Save and Open
features to your program. For example, if you ran a program and entered
some configuration settings, you could save those settings to a shelf file and
then have the program load them the next time it is run.

Enter the following into the interactive shell:

>>> import shelve
>>> shelfFile = shelve.open('mydata')
>>> cats = ['Zophie', 'Pooka', 'Simon']
>>> shelfFile['cats'] = cats
>>> shelfFile.close()

To read and write data using the shelve module, you first import shelve.
Call shelve.open() and pass it a filename, and then store the returned shelf
value in a variable. You can make changes to the shelf value as if it were a
dictionary. When you’re done, call close() on the shelf value. Here, our shelf
value is stored in shelfFile. We create a list cats and write shelfFile['cats'] =
cats to store the list in shelfFile as a value associated with the key 'cats' (like
in a dictionary). Then we call close() on shelfFile. Note that as of Python 3.7,

220 Chapter 9

you have to pass the open() shelf method filenames as strings. You can’t pass
it Path object.

After running the previous code on Windows, you will see three new files
in the current working directory: mydata.bak, mydata.dat, and mydata.dir. On
macOS, only a single mydata.db file will be created.

These binary files contain the data you stored in your shelf. The format
of these binary files is not important; you only need to know what the shelve
module does, not how it does it. The module frees you from worrying about
how to store your program’s data to a file.

Your programs can use the shelve module to later reopen and retrieve
the data from these shelf files. Shelf values don’t have to be opened in read
or write mode—they can do both once opened. Enter the following into the
interactive shell:

>>> shelfFile = shelve.open('mydata')
>>> type(shelfFile)
<class 'shelve.DbfilenameShelf'>
>>> shelfFile['cats']
['Zophie', 'Pooka', 'Simon']
>>> shelfFile.close()

Here, we open the shelf files to check that our data was stored correctly.
Entering shelfFile['cats'] returns the same list that we stored earlier, so we
know that the list is correctly stored, and we call close().

Just like dictionaries, shelf values have keys() and values() methods that
will return list-like values of the keys and values in the shelf. Since these
methods return list-like values instead of true lists, you should pass them
to the list() function to get them in list form. Enter the following into the
interactive shell:

>>> shelfFile = shelve.open('mydata')
>>> list(shelfFile.keys())
['cats']
>>> list(shelfFile.values())
[['Zophie', 'Pooka', 'Simon']]
>>> shelfFile.close()

Plaintext is useful for creating files that you’ll read in a text editor such
as Notepad or TextEdit, but if you want to save data from your Python pro-
grams, use the shelve module.

Saving Variables with the pprint.pformat() Function
Recall from “Pretty Printing” on page 118 that the pprint.pprint() function
will “pretty print” the contents of a list or dictionary to the screen, while
the pprint.pformat() function will return this same text as a string instead of
printing it. Not only is this string formatted to be easy to read, but it is also
syntactically correct Python code. Say you have a dictionary stored in a vari-
able and you want to save this variable and its contents for future use. Using

Reading and Writing Files 221

pprint.pformat() will give you a string that you can write to a .py file. This file
will be your very own module that you can import whenever you want to use
the variable stored in it.

For example, enter the following into the interactive shell:

>>> import pprint
>>> cats = [{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]
>>> pprint.pformat(cats)
"[{'desc': 'chubby', 'name': 'Zophie'}, {'desc': 'fluffy', 'name': 'Pooka'}]"
>>> fileObj = open('myCats.py', 'w')
>>> fileObj.write('cats = ' + pprint.pformat(cats) + '\n')
83
>>> fileObj.close()

Here, we import pprint to let us use pprint.pformat(). We have a list
of dictionaries, stored in a variable cats. To keep the list in cats available
even after we close the shell, we use pprint.pformat() to return it as a string.
Once we have the data in cats as a string, it’s easy to write the string to a
file, which we’ll call myCats.py.

The modules that an import statement imports are themselves just
Python scripts. When the string from pprint.pformat() is saved to a .py file,
the file is a module that can be imported just like any other.

And since Python scripts are themselves just text files with the .py file
extension, your Python programs can even generate other Python pro-
grams. You can then import these files into scripts.

>>> import myCats
>>> myCats.cats
[{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]
>>> myCats.cats[0]
{'name': 'Zophie', 'desc': 'chubby'}
>>> myCats.cats[0]['name']
'Zophie'

The benefit of creating a .py file (as opposed to saving variables with
the shelve module) is that because it is a text file, the contents of the file
can be read and modified by anyone with a simple text editor. For most
applications, however, saving data using the shelve module is the preferred
way to save variables to a file. Only basic data types such as integers, floats,
strings, lists, and dictionaries can be written to a file as simple text. File
objects, for example, cannot be encoded as text.

Project: Generating Random Quiz Files
Say you’re a geography teacher with 35 students in your class and you want
to give a pop quiz on US state capitals. Alas, your class has a few bad eggs in
it, and you can’t trust the students not to cheat. You’d like to randomize the

222 Chapter 9

order of questions so that each quiz is unique, making it impossible for any-
one to crib answers from anyone else. Of course, doing this by hand would
be a lengthy and boring affair. Fortunately, you know some Python.

Here is what the program does:

1.	 Creates 35 different quizzes

2.	 Creates 50 multiple-choice questions for each quiz, in random order

3.	 Provides the correct answer and three random wrong answers for each
question, in random order

4.	 Writes the quizzes to 35 text files

5.	 Writes the answer keys to 35 text files

This means the code will need to do the following:

1.	 Store the states and their capitals in a dictionary

2.	 Call open(), write(), and close() for the quiz and answer key text files

3.	 Use random.shuffle() to randomize the order of the questions and
multiple-choice options

Step 1: Store the Quiz Data in a Dictionary
The first step is to create a skeleton script and fill it with your quiz
data. Create a file named randomQuizGenerator.py, and make it look
like the following:

#! python3
randomQuizGenerator.py - Creates quizzes with questions and answers in
random order, along with the answer key.

 import random

The quiz data. Keys are states and values are their capitals.
 capitals = {'Alabama': 'Montgomery', 'Alaska': 'Juneau', 'Arizona': 'Phoenix',

'Arkansas': 'Little Rock', 'California': 'Sacramento', 'Colorado': 'Denver',
'Connecticut': 'Hartford', 'Delaware': 'Dover', 'Florida': 'Tallahassee',
'Georgia': 'Atlanta', 'Hawaii': 'Honolulu', 'Idaho': 'Boise', 'Illinois':
'Springfield', 'Indiana': 'Indianapolis', 'Iowa': 'Des Moines', 'Kansas':
'Topeka', 'Kentucky': 'Frankfort', 'Louisiana': 'Baton Rouge', 'Maine':
'Augusta', 'Maryland': 'Annapolis', 'Massachusetts': 'Boston', 'Michigan':
'Lansing', 'Minnesota': 'Saint Paul', 'Mississippi': 'Jackson', 'Missouri':
'Jefferson City', 'Montana': 'Helena', 'Nebraska': 'Lincoln', 'Nevada':
'Carson City', 'New Hampshire': 'Concord', 'New Jersey': 'Trenton', 'New
Mexico': 'Santa Fe', 'New York': 'Albany', 'North Carolina': 'Raleigh',
'North Dakota': 'Bismarck', 'Ohio': 'Columbus', 'Oklahoma': 'Oklahoma City',
'Oregon': 'Salem', 'Pennsylvania': 'Harrisburg', 'Rhode Island': 'Providence',
'South Carolina': 'Columbia', 'South Dakota': 'Pierre', 'Tennessee':
'Nashville', 'Texas': 'Austin', 'Utah': 'Salt Lake City', 'Vermont':
'Montpelier', 'Virginia': 'Richmond', 'Washington': 'Olympia', 'West
Virginia': 'Charleston', 'Wisconsin': 'Madison', 'Wyoming': 'Cheyenne'}

Generate 35 quiz files.

Reading and Writing Files 223

 for quizNum in range(35):
 # TODO: Create the quiz and answer key files.

 # TODO: Write out the header for the quiz.

 # TODO: Shuffle the order of the states.

 # TODO: Loop through all 50 states, making a question for each.

Since this program will be randomly ordering the questions and
answers, you’ll need to import the random module  to make use of its
functions. The capitals variable  contains a dictionary with US states as
keys and their capitals as values. And since you want to create 35 quizzes,
the code that actually generates the quiz and answer key files (marked with
TODO comments for now) will go inside a for loop that loops 35 times .
(This number can be changed to generate any number of quiz files.)

Step 2: Create the Quiz File and Shuffle the Question Order
Now it’s time to start filling in those TODOs.

The code in the loop will be repeated 35 times—once for each quiz—
so you have to worry about only one quiz at a time within the loop. First
you’ll create the actual quiz file. It needs to have a unique filename and
should also have some kind of standard header in it, with places for the stu-
dent to fill in a name, date, and class period. Then you’ll need to get a list
of states in randomized order, which can be used later to create the ques-
tions and answers for the quiz.

Add the following lines of code to randomQuizGenerator.py:

#! python3
randomQuizGenerator.py - Creates quizzes with questions and answers in
random order, along with the answer key.

--snip--

Generate 35 quiz files.
for quizNum in range(35):
 # Create the quiz and answer key files.

  quizFile = open(f'capitalsquiz{quizNum + 1}.txt', 'w')
  answerKeyFile = open(f'capitalsquiz_answers{quizNum + 1}.txt', 'w')

 # Write out the header for the quiz.
  quizFile.write('Name:\n\nDate:\n\nPeriod:\n\n')

 quizFile.write((' ' * 20) + f'State Capitals Quiz (Form{quizNum + 1})')
 quizFile.write('\n\n')

 # Shuffle the order of the states.
 states = list(capitals.keys())

  random.shuffle(states)

 # TODO: Loop through all 50 states, making a question for each.

224 Chapter 9

The filenames for the quizzes will be capitalsquiz<N>.txt, where <N> is a
unique number for the quiz that comes from quizNum, the for loop’s counter.
The answer key for capitalsquiz<N>.txt will be stored in a text file named
capitalsquiz_answers<N>.txt. Each time through the loop, the {quizNum + 1}
placeholder in f'capitalsquiz{quizNum + 1}.txt' and f'capitalsquiz_answers​
{quizNum + 1}.txt' will be replaced by the unique number, so the first quiz
and answer key created will be capitalsquiz1.txt and capitalsquiz_answers1.txt.
These files will be created with calls to the open() function at  and , with
'w' as the second argument to open them in write mode.

The write() statements at  create a quiz header for the student to fill
out. Finally, a randomized list of US states is created with the help of the
random.shuffle() function , which randomly reorders the values in any list
that is passed to it.

Step 3: Create the Answer Options
Now you need to generate the answer options for each question, which will
be multiple choice from A to D. You’ll need to create another for loop—this
one to generate the content for each of the 50 questions on the quiz. Then
there will be a third for loop nested inside to generate the multiple-choice
options for each question. Make your code look like the following:

#! python3
randomQuizGenerator.py - Creates quizzes with questions and answers in
random order, along with the answer key.

--snip--

 # Loop through all 50 states, making a question for each.
 for questionNum in range(50):

 # Get right and wrong answers.
  correctAnswer = capitals[states[questionNum]]
  wrongAnswers = list(capitals.values())
  del wrongAnswers[wrongAnswers.index(correctAnswer)]
  wrongAnswers = random.sample(wrongAnswers, 3)
  answerOptions = wrongAnswers + [correctAnswer]
  random.shuffle(answerOptions)

 # TODO: Write the question and answer options to the quiz file.

 # TODO: Write the answer key to a file.

The correct answer is easy to get—it’s stored as a value in the capitals
dictionary . This loop will loop through the states in the shuffled states
list, from states[0] to states[49], find each state in capitals, and store that
state’s corresponding capital in correctAnswer.

The list of possible wrong answers is trickier. You can get it by duplicat-
ing all the values in the capitals dictionary , deleting the correct answer ,
and selecting three random values from this list . The random.sample() func-
tion makes it easy to do this selection. Its first argument is the list you want

Reading and Writing Files 225

to select from; the second argument is the number of values you want to
select. The full list of answer options is the combination of these three wrong
answers with the correct answers . Finally, the answers need to be random-
ized  so that the correct response isn’t always choice D.

Step 4: Write Content to the Quiz and Answer Key Files
All that is left is to write the question to the quiz file and the answer to
the answer key file. Make your code look like the following:

#! python3
randomQuizGenerator.py - Creates quizzes with questions and answers in
random order, along with the answer key.

--snip--

 # Loop through all 50 states, making a question for each.
 for questionNum in range(50):
 --snip--

 # Write the question and the answer options to the quiz file.
 quizFile.write(f'{questionNum + 1}. What is the capital of
{states[questionNum]}?\n')

  for i in range(4):
  quizFile.write(f" {'ABCD'[i]}. { answerOptions[i]}\n")

 quizFile.write('\n')

 # Write the answer key to a file.
  answerKeyFile.write(f"{questionNum + 1}.
 {'ABCD'[answerOptions.index(correctAnswer)]}")

 quizFile.close()
 answerKeyFile.close()

A for loop that goes through integers 0 to 3 will write the answer options
in the answerOptions list . The expression 'ABCD'[i] at  treats the string
'ABCD' as an array and will evaluate to 'A','B', 'C', and then 'D' on each
respective iteration through the loop.

In the final line , the expression answerOptions.index(correctAnswer)
will find the integer index of the correct answer in the randomly ordered
answer options, and 'ABCD'[answerOptions.index(correctAnswer)] will evaluate
to the correct answer’s letter to be written to the answer key file.

After you run the program, this is how your capitalsquiz1.txt file will look,
though of course your questions and answer options may be different from
those shown here, depending on the outcome of your random.shuffle() calls:

Name:

Date:

Period:

 State Capitals Quiz (Form 1)

226 Chapter 9

1. What is the capital of West Virginia?
 A. Hartford
 B. Santa Fe
 C. Harrisburg
 D. Charleston

2. What is the capital of Colorado?
 A. Raleigh
 B. Harrisburg
 C. Denver
 D. Lincoln

--snip--

The corresponding capitalsquiz_answers1.txt text file will look like this:

1. D
2. C
3. A
4. C
--snip--

Project: Updatable Multi-Clipboard
Let’s rewrite the “multi-clipboard” program from Chapter 6 so that it uses
the shelve module. The user will now be able to save new strings to load to
the clipboard without having to modify the source code. We’ll name this new
program mcb.pyw (since “mcb” is shorter to type than “multi-clipboard”).
The .pyw extension means that Python won’t show a Terminal window when
it runs this program. (See Appendix B for more details.)

The program will save each piece of clipboard text under a keyword.
For example, when you run py mcb.pyw save spam, the current contents of the
clipboard will be saved with the keyword spam. This text can later be loaded
to the clipboard again by running py mcb.pyw spam. And if the user forgets
what keywords they have, they can run py mcb.pyw list to copy a list of all
keywords to the clipboard.

Here’s what the program does:

1.	 The command line argument for the keyword is checked.

2.	 If the argument is save, then the clipboard contents are saved to
the keyword.

3.	 If the argument is list, then all the keywords are copied to the clipboard.

4.	 Otherwise, the text for the keyword is copied to the clipboard.

This means the code will need to do the following:

1.	 Read the command line arguments from sys.argv.

2.	 Read and write to the clipboard.

3.	 Save and load to a shelf file.

Reading and Writing Files 227

If you use Windows, you can easily run this script from the Run…
window by creating a batch file named mcb.bat with the following content:

@pyw.exe C:\Python34\mcb.pyw %*

Step 1: Comments and Shelf Setup
Let’s start by making a skeleton script with some comments and basic setup.
Make your code look like the following:

#! python3
mcb.pyw - Saves and loads pieces of text to the clipboard.

 # Usage: py.exe mcb.pyw save <keyword> - Saves clipboard to keyword.
py.exe mcb.pyw <keyword> - Loads keyword to clipboard.
py.exe mcb.pyw list - Loads all keywords to clipboard.

 import shelve, pyperclip, sys

 mcbShelf = shelve.open('mcb')

TODO: Save clipboard content.

TODO: List keywords and load content.

mcbShelf.close()

It’s common practice to put general usage information in comments
at the top of the file . If you ever forget how to run your script, you can
always look at these comments for a reminder. Then you import your mod-
ules . Copying and pasting will require the pyperclip module, and reading
the command line arguments will require the sys module. The shelve mod-
ule will also come in handy: Whenever the user wants to save a new piece
of clipboard text, you’ll save it to a shelf file. Then, when the user wants to
paste the text back to their clipboard, you’ll open the shelf file and load it
back into your program. The shelf file will be named with the prefix mcb .

Step 2: Save Clipboard Content with a Keyword
The program does different things depending on whether the user wants to
save text to a keyword, load text into the clipboard, or list all the existing key-
words. Let’s deal with that first case. Make your code look like the following:

#! python3
mcb.pyw - Saves and loads pieces of text to the clipboard.
--snip--

Save clipboard content.
 if len(sys.argv) == 3 and sys.argv[1].lower() == 'save':
  mcbShelf[sys.argv[2]] = pyperclip.paste()

elif len(sys.argv) == 2:

228 Chapter 9

  # TODO: List keywords and load content.

mcbShelf.close()

If the first command line argument (which will always be at index 1 of the
sys.argv list) is 'save' , the second command line argument is the keyword
for the current content of the clipboard. The keyword will be used as the key
for mcbShelf, and the value will be the text currently on the clipboard .

If there is only one command line argument, you will assume it is either
'list' or a keyword to load content onto the clipboard. You will implement
that code later. For now, just put a TODO comment there .

Step 3: List Keywords and Load a Keyword’s Content
Finally, let’s implement the two remaining cases: the user wants to load clip-
board text in from a keyword, or they want a list of all available keywords.
Make your code look like the following:

#! python3
mcb.pyw - Saves and loads pieces of text to the clipboard.
--snip--

Save clipboard content.
if len(sys.argv) == 3 and sys.argv[1].lower() == 'save':
 mcbShelf[sys.argv[2]] = pyperclip.paste()
elif len(sys.argv) == 2:
 # List keywords and load content.

  if sys.argv[1].lower() == 'list':
  pyperclip.copy(str(list(mcbShelf.keys())))

 elif sys.argv[1] in mcbShelf:
  pyperclip.copy(mcbShelf[sys.argv[1]])

mcbShelf.close()

If there is only one command line argument, first let’s check whether
it’s 'list' . If so, a string representation of the list of shelf keys will be cop-
ied to the clipboard . The user can paste this list into an open text editor
to read it.

Otherwise, you can assume the command line argument is a keyword.
If this keyword exists in the mcbShelf shelf as a key, you can load the value
onto the clipboard .

And that’s it! Launching this program has different steps depending on
what operating system your computer uses. See Appendix B for details.

Recall the password locker program you created in Chapter 6 that
stored the passwords in a dictionary. Updating the passwords required
changing the source code of the program. This isn’t ideal, because average
users don’t feel comfortable changing source code to update their software.
Also, every time you modify the source code to a program, you run the risk
of accidentally introducing new bugs. By storing the data for a program in
a different place than the code, you can make your programs easier for oth-
ers to use and more resistant to bugs.

Reading and Writing Files 229

Summary
Files are organized into folders (also called directories), and a path describes
the location of a file. Every program running on your computer has a current
working directory, which allows you to specify file paths relative to the cur-
rent location instead of always typing the full (or absolute) path. The pathlib
and os.path modules have many functions for manipulating file paths.

Your programs can also directly interact with the contents of text
files. The open() function can open these files to read in their contents as
one large string (with the read() method) or as a list of strings (with the
readlines() method). The open() function can open files in write or append
mode to create new text files or add to existing text files, respectively.

In previous chapters, you used the clipboard as a way of getting large
amounts of text into a program, rather than typing it all in. Now you can
have your programs read files directly from the hard drive, which is a big
improvement, since files are much less volatile than the clipboard.

In the next chapter, you will learn how to handle the files themselves,
by copying them, deleting them, renaming them, moving them, and more.

Practice Questions

1.	 What is a relative path relative to?

2.	 What does an absolute path start with?

3.	 What does Path('C:/Users') / 'Al' evaluate to on Windows?

4.	 What does 'C:/Users' / 'Al' evaluate to on Windows?

5.	 What do the os.getcwd() and os.chdir() functions do?

6.	 What are the . and .. folders?

7.	 In C:\bacon\eggs\spam.txt, which part is the dir name, and which part
is the base name?

8.	 What are the three “mode” arguments that can be passed to the
open() function?

9.	 What happens if an existing file is opened in write mode?

10.	 What is the difference between the read() and readlines() methods?

11.	 What data structure does a shelf value resemble?

Practice Projects
For practice, design and write the following programs.

Extending the Multi-Clipboard
Extend the multi-clipboard program in this chapter so that it has a delete
<keyword> command line argument that will delete a keyword from the shelf.
Then add a delete command line argument that will delete all keywords.

230 Chapter 9

Mad Libs
Create a Mad Libs program that reads in text files and lets the user add
their own text anywhere the word ADJECTIVE, NOUN, ADVERB, or VERB
appears in the text file. For example, a text file may look like this:

The ADJECTIVE panda walked to the NOUN and then VERB. A nearby NOUN was
unaffected by these events.

The program would find these occurrences and prompt the user to
replace them.

Enter an adjective:
silly
Enter a noun:
chandelier
Enter a verb:
screamed
Enter a noun:
pickup truck

The following text file would then be created:

The silly panda walked to the chandelier and then screamed. A nearby pickup
truck was unaffected by these events.

The results should be printed to the screen and saved to a new text file.

Regex Search
Write a program that opens all .txt files in a folder and searches for any
line that matches a user-supplied regular expression. The results should
be printed to the screen.

10
O R G A N I Z I N G F I L E S

In the previous chapter, you learned how
to create and write to new files in Python.

Your programs can also organize preexist-
ing files on the hard drive. Maybe you’ve had

the experience of going through a folder full of doz-
ens, hundreds, or even thousands of files and copying,
renaming, moving, or compressing them all by hand.
Or consider tasks such as these:

•	 Making copies of all PDF files (and only the PDF files) in every sub-
folder of a folder

•	 Removing the leading zeros in the filenames for every file in a folder of
hundreds of files named spam001.txt, spam002.txt, spam003.txt, and so on

•	 Compressing the contents of several folders into one ZIP file (which
could be a simple backup system)

232 Chapter 10

All this boring stuff is just begging to be automated in Python. By
programming your computer to do these tasks, you can transform it into
a quick-working file clerk who never makes mistakes.

As you begin working with files, you may find it helpful to be able
to quickly see what the extension (.txt, .pdf, .jpg, and so on) of a file is.
With macOS and Linux, your file browser most likely shows extensions
automatically. With Windows, file extensions may be hidden by default.
To show extensions, go to StartControl PanelAppearance and
PersonalizationFolder Options. On the View tab, under Advanced
Settings, uncheck the Hide extensions for known file types checkbox.

The shutil Module
The shutil (or shell utilities) module has functions to let you copy, move,
rename, and delete files in your Python programs. To use the shutil func-
tions, you will first need to use import shutil.

Copying Files and Folders
The shutil module provides functions for copying files, as well as entire
folders.

Calling shutil.copy(source, destination) will copy the file at the path
source to the folder at the path destination. (Both source and destination can
be strings or Path objects.) If destination is a filename, it will be used as the
new name of the copied file. This function returns a string or Path object of
the copied file.

Enter the following into the interactive shell to see how shutil.copy() works:

>>> import shutil, os
>>> from pathlib import Path
>>> p = Path.home()

 >>> shutil.copy(p / 'spam.txt', p / 'some_folder')
'C:\\Users\\Al\\some_folder\\spam.txt'

 >>> shutil.copy(p / 'eggs.txt', p / 'some_folder/eggs2.txt')
WindowsPath('C:/Users/Al/some_folder/eggs2.txt')

The first shutil.copy() call copies the file at C:\Users\Al\spam.txt to the
folder C:\Users\Al\some_folder. The return value is the path of the newly
copied file. Note that since a folder was specified as the destination , the
original spam.txt filename is used for the new, copied file’s filename. The
second shutil.copy() call  also copies the file at C:\Users\Al\eggs.txt to the
folder C:\Users\Al\some_folder but gives the copied file the name eggs2.txt.

While shutil.copy() will copy a single file, shutil.copytree() will copy
an entire folder and every folder and file contained in it. Calling shutil​
.copytree(source, destination) will copy the folder at the path source, along
with all of its files and subfolders, to the folder at the path destination. The
source and destination parameters are both strings. The function returns a
string of the path of the copied folder.

Organizing Files 233

Enter the following into the interactive shell:

>>> import shutil, os
>>> from pathlib import Path
>>> p = Path.home()
>>> shutil.copytree(p / 'spam', p / 'spam_backup')
WindowsPath('C:/Users/Al/spam_backup')

The shutil.copytree() call creates a new folder named spam_backup with
the same content as the original spam folder. You have now safely backed up
your precious, precious spam.

Moving and Renaming Files and Folders
Calling shutil.move(source, destination) will move the file or folder at the path
source to the path destination and will return a string of the absolute path of
the new location.

If destination points to a folder, the source file gets moved into destination
and keeps its current filename. For example, enter the following into the
interactive shell:

>>> import shutil
>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')
'C:\\eggs\\bacon.txt'

Assuming a folder named eggs already exists in the C:\ directory, this
shutil.move() call says, “Move C:\bacon.txt into the folder C:\eggs.”

If there had been a bacon.txt file already in C:\eggs, it would have been
overwritten. Since it’s easy to accidentally overwrite files in this way, you
should take some care when using move().

The destination path can also specify a filename. In the following
example, the source file is moved and renamed.

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs\\new_bacon.txt')
'C:\\eggs\\new_bacon.txt'

This line says, “Move C:\bacon.txt into the folder C:\eggs, and while
you’re at it, rename that bacon.txt file to new_bacon.txt.”

Both of the previous examples worked under the assumption that there
was a folder eggs in the C:\ directory. But if there is no eggs folder, then move()
will rename bacon.txt to a file named eggs.

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')
'C:\\eggs'

Here, move() can’t find a folder named eggs in the C:\ directory and so
assumes that destination must be specifying a filename, not a folder. So
the bacon.txt text file is renamed to eggs (a text file without the .txt file exten-
sion)—probably not what you wanted! This can be a tough-to-spot bug in
your programs since the move() call can happily do something that might be

234 Chapter 10

quite different from what you were expecting. This is yet another reason to
be careful when using move().

Finally, the folders that make up the destination must already exist,
or else Python will throw an exception. Enter the following into the interac-
tive shell:

>>> shutil.move('spam.txt', 'c:\\does_not_exist\\eggs\\ham')
Traceback (most recent call last):
 --snip--
FileNotFoundError: [Errno 2] No such file or directory: 'c:\\does_not_exist\\
eggs\\ham'

Python looks for eggs and ham inside the directory does_not_exist. It
doesn’t find the nonexistent directory, so it can’t move spam.txt to the path
you specified.

Permanently Deleting Files and Folders
You can delete a single file or a single empty folder with functions in the
os module, whereas to delete a folder and all of its contents, you use the
shutil module.

•	 Calling os.unlink(path) will delete the file at path.

•	 Calling os.rmdir(path) will delete the folder at path. This folder must be
empty of any files or folders.

•	 Calling shutil.rmtree(path) will remove the folder at path, and all files
and folders it contains will also be deleted.

Be careful when using these functions in your programs! It’s often a
good idea to first run your program with these calls commented out and
with print() calls added to show the files that would be deleted. Here is
a Python program that was intended to delete files that have the .txt file
extension but has a typo (highlighted in bold) that causes it to delete
.rxt files instead:

import os
from pathlib import Path
for filename in Path.home().glob('*.rxt'):
 os.unlink(filename)

If you had any important files ending with .rxt, they would have been
accidentally, permanently deleted. Instead, you should have first run the
program like this:

import os
from pathlib import Path
for filename in Path.home().glob('*.rxt'):
 #os.unlink(filename)
 print(filename)

Organizing Files 235

Now the os.unlink() call is commented, so Python ignores it. Instead, you
will print the filename of the file that would have been deleted. Running this
version of the program first will show you that you’ve accidentally told the
program to delete .rxt files instead of .txt files.

Once you are certain the program works as intended, delete the
print(filename) line and uncomment the os.unlink(filename) line. Then
run the program again to actually delete the files.

Safe Deletes with the send2trash Module
Since Python’s built-in shutil.rmtree() function irreversibly deletes files
and folders, it can be dangerous to use. A much better way to delete
files and folders is with the third-party send2trash module. You can install
this module by running pip install --user send2trash from a Terminal win-
dow. (See Appendix A for a more in-depth explanation of how to install
third-party modules.)

Using send2trash is much safer than Python’s regular delete functions,
because it will send folders and files to your computer’s trash or recycle
bin instead of permanently deleting them. If a bug in your program deletes
something with send2trash you didn’t intend to delete, you can later restore
it from the recycle bin.

After you have installed send2trash, enter the following into the interac-
tive shell:

>>> import send2trash
>>> baconFile = open('bacon.txt', 'a') # creates the file
>>> baconFile.write('Bacon is not a vegetable.')
25
>>> baconFile.close()
>>> send2trash.send2trash('bacon.txt')

In general, you should always use the send2trash.send2trash() function
to delete files and folders. But while sending files to the recycle bin lets you
recover them later, it will not free up disk space like permanently deleting
them does. If you want your program to free up disk space, use the os and
shutil functions for deleting files and folders. Note that the send2trash()
function can only send files to the recycle bin; it cannot pull files out of it.

Walking a Directory Tree
Say you want to rename every file in some folder and also every file in every
subfolder of that folder. That is, you want to walk through the directory tree,
touching each file as you go. Writing a program to do this could get tricky;
fortunately, Python provides a function to handle this process for you.

Let’s look at the C:\delicious folder with its contents, shown in Figure 10-1.

236 Chapter 10

delicious

C:\

cats

catnames.txt

zophie.jpg

walnut

waffles

butter.txt

spam.txt

Figure 10-1: An example folder that
contains three folders and four files

Here is an example program that uses the os.walk() function on the
directory tree from Figure 10-1:

import os

for folderName, subfolders, filenames in os.walk('C:\\delicious'):
 print('The current folder is ' + folderName)

 for subfolder in subfolders:
 print('SUBFOLDER OF ' + folderName + ': ' + subfolder)

 for filename in filenames:
 print('FILE INSIDE ' + folderName + ': '+ filename)

 print('')

The os.walk() function is passed a single string value: the path of a
folder. You can use os.walk() in a for loop statement to walk a directory
tree, much like how you can use the range() function to walk over a range
of numbers. Unlike range(), the os.walk() function will return three values
on each iteration through the loop:

•	 A string of the current folder’s name

•	 A list of strings of the folders in the current folder

•	 A list of strings of the files in the current folder

(By current folder, I mean the folder for the current iteration of the
for loop. The current working directory of the program is not changed by
os.walk().)

Organizing Files 237

Just like you can choose the variable name i in the code for i in
range(10):, you can also choose the variable names for the three values
listed earlier. I usually use the names foldername, subfolders, and filenames.

When you run this program, it will output the following:

The current folder is C:\delicious
SUBFOLDER OF C:\delicious: cats
SUBFOLDER OF C:\delicious: walnut
FILE INSIDE C:\delicious: spam.txt

The current folder is C:\delicious\cats
FILE INSIDE C:\delicious\cats: catnames.txt
FILE INSIDE C:\delicious\cats: zophie.jpg

The current folder is C:\delicious\walnut
SUBFOLDER OF C:\delicious\walnut: waffles

The current folder is C:\delicious\walnut\waffles
FILE INSIDE C:\delicious\walnut\waffles: butter.txt.

Since os.walk() returns lists of strings for the subfolder and filename
variables, you can use these lists in their own for loops. Replace the print()
function calls with your own custom code. (Or if you don’t need one or
both of them, remove the for loops.)

Compressing Files with the zipfile Module
You may be familiar with ZIP files (with the .zip file extension), which
can hold the compressed contents of many other files. Compressing a file
reduces its size, which is useful when transferring it over the internet. And
since a ZIP file can also contain multiple files and subfolders, it’s a handy
way to package several files into one. This single file, called an archive file,
can then be, say, attached to an email.

Your Python programs can create and open (or extract) ZIP files using
functions in the zipfile module. Say you have a ZIP file named example.zip
that has the contents shown in Figure 10-2.

cats

catnames.txt

zophie.jpg

spam.txt

Figure 10-2: The contents of example.zip

You can download this ZIP file from https://nostarch.com/automatestuff2/
or just follow along using a ZIP file already on your computer.

238 Chapter 10

Reading ZIP Files
To read the contents of a ZIP file, first you must create a ZipFile object
(note the capital letters Z and F). ZipFile objects are conceptually similar
to the File objects you saw returned by the open() function in the previous
chapter: they are values through which the program interacts with the file.
To create a ZipFile object, call the zipfile.ZipFile() function, passing it a
string of the .ZIP file’s filename. Note that zipfile is the name of the Python
module, and ZipFile() is the name of the function.

For example, enter the following into the interactive shell:

>>> import zipfile, os

>>> from pathlib import Path
>>> p = Path.home()
>>> exampleZip = zipfile.ZipFile(p / 'example.zip')
>>> exampleZip.namelist()
['spam.txt', 'cats/', 'cats/catnames.txt', 'cats/zophie.jpg']
>>> spamInfo = exampleZip.getinfo('spam.txt')
>>> spamInfo.file_size
13908
>>> spamInfo.compress_size
3828

 >>> f'Compressed file is {round(spamInfo.file_size / spamInfo
.compress_size, 2)}x smaller!'
)
'Compressed file is 3.63x smaller!'
>>> exampleZip.close()

A ZipFile object has a namelist() method that returns a list of strings
for all the files and folders contained in the ZIP file. These strings can be
passed to the getinfo() ZipFile method to return a ZipInfo object about that
particular file. ZipInfo objects have their own attributes, such as file_size
and compress_size in bytes, which hold integers of the original file size and
compressed file size, respectively. While a ZipFile object represents an entire
archive file, a ZipInfo object holds useful information about a single file in
the archive.

The command at  calculates how efficiently example.zip is compressed
by dividing the original file size by the compressed file size and prints this
information.

Extracting from ZIP Files
The extractall() method for ZipFile objects extracts all the files and folders
from a ZIP file into the current working directory.

>>> import zipfile, os
>>> from pathlib import Path
>>> p = Path.home()
>>> exampleZip = zipfile.ZipFile(p / 'example.zip')

 >>> exampleZip.extractall()
>>> exampleZip.close()

Organizing Files 239

After running this code, the contents of example.zip will be extracted to
C:\ . Optionally, you can pass a folder name to extractall() to have it extract
the files into a folder other than the current working directory. If the
folder passed to the extractall() method does not exist, it will be created.
For instance, if you replaced the call at  with exampleZip.extractall('C:\\
delicious'), the code would extract the files from example.zip into a newly
created C:\delicious folder.

The extract() method for ZipFile objects will extract a single file from
the ZIP file. Continue the interactive shell example:

>>> exampleZip.extract('spam.txt')
'C:\\spam.txt'
>>> exampleZip.extract('spam.txt', 'C:\\some\\new\\folders')
'C:\\some\\new\\folders\\spam.txt'
>>> exampleZip.close()

The string you pass to extract() must match one of the strings in the
list returned by namelist(). Optionally, you can pass a second argument to
extract() to extract the file into a folder other than the current working
directory. If this second argument is a folder that doesn’t yet exist, Python
will create the folder. The value that extract() returns is the absolute path
to which the file was extracted.

Creating and Adding to ZIP Files
To create your own compressed ZIP files, you must open the ZipFile object
in write mode by passing 'w' as the second argument. (This is similar to
opening a text file in write mode by passing 'w' to the open() function.)

When you pass a path to the write() method of a ZipFile object, Python
will compress the file at that path and add it into the ZIP file. The write()
method’s first argument is a string of the filename to add. The second argu-
ment is the compression type parameter, which tells the computer what algo-
rithm it should use to compress the files; you can always just set this value to
zipfile.ZIP_DEFLATED. (This specifies the deflate compression algorithm, which
works well on all types of data.) Enter the following into the interactive shell:

>>> import zipfile
>>> newZip = zipfile.ZipFile('new.zip', 'w')
>>> newZip.write('spam.txt', compress_type=zipfile.ZIP_DEFLATED)
>>> newZip.close()

This code will create a new ZIP file named new.zip that has the com-
pressed contents of spam.txt.

Keep in mind that, just as with writing to files, write mode will erase
all existing contents of a ZIP file. If you want to simply add files to an exist-
ing ZIP file, pass 'a' as the second argument to zipfile.ZipFile() to open
the ZIP file in append mode.

240 Chapter 10

Project: Renaming Files with American-Style Dates
to European-Style Dates

Say your boss emails you thousands of files with American-style dates
(MM-DD-YYYY) in their names and needs them renamed to European-
style dates (DD-MM-YYYY). This boring task could take all day to do by
hand! Let’s write a program to do it instead.

Here’s what the program does:

1.	 It searches all the filenames in the current working directory for
American-style dates.

2.	 When one is found, it renames the file with the month and day
swapped to make it European-style.

This means the code will need to do the following:

1.	 Create a regex that can identify the text pattern of American-style dates.

2.	 Call os.listdir() to find all the files in the working directory.

3.	 Loop over each filename, using the regex to check whether it has a date.

4.	 If it has a date, rename the file with shutil.move().

For this project, open a new file editor window and save your code as
renameDates.py.

Step 1: Create a Regex for American-Style Dates
The first part of the program will need to import the necessary modules
and create a regex that can identify MM-DD-YYYY dates. The to-do com-
ments will remind you what’s left to write in this program. Typing them as
TODO makes them easy to find using Mu editor’s ctrl-F find feature. Make
your code look like the following:

#! python3
renameDates.py - Renames filenames with American MM-DD-YYYY date format
to European DD-MM-YYYY.

 import shutil, os, re

Create a regex that matches files with the American date format.
 datePattern = re.compile(r"""^(.*?) # all text before the date

 ((0|1)?\d)- # one or two digits for the month
 ((0|1|2|3)?\d)- # one or two digits for the day
 ((19|20)\d\d) # four digits for the year
 (.*?)$ # all text after the date
 """, re.VERBOSE)

TODO: Loop over the files in the working directory.

TODO: Skip files without a date.

Organizing Files 241

TODO: Get the different parts of the filename.

TODO: Form the European-style filename.

TODO: Get the full, absolute file paths.

TODO: Rename the files.

From this chapter, you know the shutil.move() function can be used
to rename files: its arguments are the name of the file to rename and the
new filename. Because this function exists in the shutil module, you must
import that module .

But before renaming the files, you need to identify which files you want to
rename. Filenames with dates such as spam4-4-1984.txt and 01-03-2014eggs.zip
should be renamed, while filenames without dates such as littlebrother.epub can
be ignored.

You can use a regular expression to identify this pattern. After import-
ing the re module at the top, call re.compile() to create a Regex object .
Passing re.VERBOSE for the second argument  will allow whitespace and
comments in the regex string to make it more readable.

The regular expression string begins with ^(.*?) to match any text at the
beginning of the filename that might come before the date. The ((0|1)?\d)
group matches the month. The first digit can be either 0 or 1, so the regex
matches 12 for December but also 02 for February. This digit is also optional so
that the month can be 04 or 4 for April. The group for the day is ((0|1|2|3)?\d)
and follows similar logic; 3, 03, and 31 are all valid numbers for days. (Yes, this
regex will accept some invalid dates such as 4-31-2014, 2-29-2013, and 0-15-2014.
Dates have a lot of thorny special cases that can be easy to miss. But for sim-
plicity, the regex in this program works well enough.)

While 1885 is a valid year, you can just look for years in the 20th or 21st
century. This will keep your program from accidentally matching nondate
filenames with a date-like format, such as 10-10-1000.txt.

The (.*?)$ part of the regex will match any text that comes after the date.

Step 2: Identify the Date Parts from the Filenames
Next, the program will have to loop over the list of filename strings
returned from os.listdir() and match them against the regex. Any files
that do not have a date in them should be skipped. For filenames that have
a date, the matched text will be stored in several variables. Fill in the first
three TODOs in your program with the following code:

#! python3
renameDates.py - Renames filenames with American MM-DD-YYYY date format
to European DD-MM-YYYY.

--snip--

Loop over the files in the working directory.
for amerFilename in os.listdir('.'):

242 Chapter 10

 mo = datePattern.search(amerFilename)

 # Skip files without a date.
  if mo == None:
  continue

  # Get the different parts of the filename.
 beforePart = mo.group(1)
 monthPart = mo.group(2)
 dayPart = mo.group(4)
 yearPart = mo.group(6)
 afterPart = mo.group(8)

--snip--

If the Match object returned from the search() method is None , then the
filename in amerFilename does not match the regular expression. The continue
statement  will skip the rest of the loop and move on to the next filename.

Otherwise, the various strings matched in the regular expression
groups are stored in variables named beforePart, monthPart, dayPart, yearPart,
and afterPart . The strings in these variables will be used to form the
European-style filename in the next step.

To keep the group numbers straight, try reading the regex from the
beginning, and count up each time you encounter an opening parenthe-
sis. Without thinking about the code, just write an outline of the regular
expression. This can help you visualize the groups. Here’s an example:

datePattern = re.compile(r"""^(1) # all text before the date
 (2 (3))- # one or two digits for the month
 (4 (5))- # one or two digits for the day
 (6 (7)) # four digits for the year
 (8)$ # all text after the date
 """, re.VERBOSE)

Here, the numbers 1 through 8 represent the groups in the regular
expression you wrote. Making an outline of the regular expression, with
just the parentheses and group numbers, can give you a clearer understand-
ing of your regex before you move on with the rest of the program.

Step 3: Form the New Filename and Rename the Files
As the final step, concatenate the strings in the variables made in the previ-
ous step with the European-style date: the date comes before the month.
Fill in the three remaining TODOs in your program with the following code:

#! python3
renameDates.py - Renames filenames with American MM-DD-YYYY date format
to European DD-MM-YYYY.

--snip--

Organizing Files 243

 # Form the European-style filename.
  euroFilename = beforePart + dayPart + '-' + monthPart + '-' + yearPart +

 afterPart

 # Get the full, absolute file paths.
 absWorkingDir = os.path.abspath('.')
 amerFilename = os.path.join(absWorkingDir, amerFilename)
 euroFilename = os.path.join(absWorkingDir, euroFilename)

 # Rename the files.
  print(f'Renaming "{amerFilename}" to "{euroFilename}"...')
  #shutil.move(amerFilename, euroFilename) # uncomment after testing

Store the concatenated string in a variable named euroFilename . Then,
pass the original filename in amerFilename and the new euroFilename variable
to the shutil.move() function to rename the file .

This program has the shutil.move() call commented out and instead
prints the filenames that will be renamed . Running the program like this
first can let you double-check that the files are renamed correctly. Then you
can uncomment the shutil.move() call and run the program again to actu-
ally rename the files.

Ideas for Similar Programs
There are many other reasons you might want to rename a large number
of files.

•	 To add a prefix to the start of the filename, such as adding spam_ to
rename eggs.txt to spam_eggs.txt

•	 To change filenames with European-style dates to American-style dates

•	 To remove the zeros from files such as spam0042.txt

Project: Backing Up a Folder into a ZIP File
Say you’re working on a project whose files you keep in a folder named
C:\AlsPythonBook. You’re worried about losing your work, so you’d like
to create ZIP file “snapshots” of the entire folder. You’d like to keep
different versions, so you want the ZIP file’s filename to increment each
time it is made; for example, AlsPythonBook_1.zip, AlsPythonBook_2.zip,
AlsPythonBook_3.zip, and so on. You could do this by hand, but it is rather
annoying, and you might accidentally misnumber the ZIP files’ names. It
would be much simpler to run a program that does this boring task for you.

For this project, open a new file editor window and save it as backupToZip.py.

Step 1: Figure Out the ZIP File’s Name
The code for this program will be placed into a function named
backupToZip(). This will make it easy to copy and paste the function

244 Chapter 10

into other Python programs that need this functionality. At the end of
the program, the function will be called to perform the backup. Make
your program look like this:

#! python3
backupToZip.py - Copies an entire folder and its contents into
a ZIP file whose filename increments.

 import zipfile, os

def backupToZip(folder):
 # Back up the entire contents of "folder" into a ZIP file.

 folder = os.path.abspath(folder) # make sure folder is absolute

 # Figure out the filename this code should use based on
 # what files already exist.

  number = 1
  while True:

 zipFilename = os.path.basename(folder) + '_' + str(number) + '.zip'
 if not os.path.exists(zipFilename):
 break
 number = number + 1

  # TODO: Create the ZIP file.

 # TODO: Walk the entire folder tree and compress the files in each folder.
 print('Done.')

backupToZip('C:\\delicious')

Do the basics first: add the shebang (#!) line, describe what the pro-
gram does, and import the zipfile and os modules .

Define a backupToZip() function that takes just one parameter, folder.
This parameter is a string path to the folder whose contents should be
backed up. The function will determine what filename to use for the ZIP
file it will create; then the function will create the file, walk the folder
folder, and add each of the subfolders and files to the ZIP file. Write TODO
comments for these steps in the source code to remind yourself to do
them later .

The first part, naming the ZIP file, uses the base name of the absolute
path of folder. If the folder being backed up is C:\delicious, the ZIP file’s
name should be delicious_N.zip, where N = 1 is the first time you run the
program, N = 2 is the second time, and so on.

You can determine what N should be by checking whether delicious_1.zip
already exists, then checking whether delicious_2.zip already exists, and so
on. Use a variable named number for N , and keep incrementing it inside
the loop that calls os.path.exists() to check whether the file exists . The
first nonexistent filename found will cause the loop to break, since it will
have found the filename of the new zip.

Organizing Files 245

Step 2: Create the New ZIP File
Next let’s create the ZIP file. Make your program look like the following:

#! python3
backupToZip.py - Copies an entire folder and its contents into
a ZIP file whose filename increments.

--snip--
 while True:
 zipFilename = os.path.basename(folder) + '_' + str(number) + '.zip'
 if not os.path.exists(zipFilename):
 break
 number = number + 1

 # Create the ZIP file.
 print(f'Creating {zipFilename}...')

  backupZip = zipfile.ZipFile(zipFilename, 'w')

 # TODO: Walk the entire folder tree and compress the files in each folder.
 print('Done.')

backupToZip('C:\\delicious')

Now that the new ZIP file’s name is stored in the zipFilename variable, you
can call zipfile.ZipFile() to actually create the ZIP file . Be sure to pass 'w'
as the second argument so that the ZIP file is opened in write mode.

Step 3: Walk the Directory Tree and Add to the ZIP File
Now you need to use the os.walk() function to do the work of listing every file
in the folder and its subfolders. Make your program look like the following:

#! python3
backupToZip.py - Copies an entire folder and its contents into
a ZIP file whose filename increments.

--snip--

 # Walk the entire folder tree and compress the files in each folder.
  for foldername, subfolders, filenames in os.walk(folder):

 print(f'Adding files in {foldername}...')
 # Add the current folder to the ZIP file.

  backupZip.write(foldername)

 # Add all the files in this folder to the ZIP file.
  for filename in filenames:

 newBase = os.path.basename(folder) + '_'
 if filename.startswith(newBase) and filename.endswith('.zip'):
 continue # don't back up the backup ZIP files
 backupZip.write(os.path.join(foldername, filename))
 backupZip.close()

246 Chapter 10

 print('Done.')

backupToZip('C:\\delicious')

You can use os.walk() in a for loop , and on each iteration it will
return the iteration’s current folder name, the subfolders in that folder,
and the filenames in that folder.

In the for loop, the folder is added to the ZIP file . The nested for
loop can go through each filename in the filenames list . Each of these is
added to the ZIP file, except for previously made backup ZIPs.

When you run this program, it will produce output that will look some-
thing like this:

Creating delicious_1.zip...
Adding files in C:\delicious...
Adding files in C:\delicious\cats...
Adding files in C:\delicious\waffles...
Adding files in C:\delicious\walnut...
Adding files in C:\delicious\walnut\waffles...
Done.

The second time you run it, it will put all the files in C:\delicious into a
ZIP file named delicious_2.zip, and so on.

Ideas for Similar Programs
You can walk a directory tree and add files to compressed ZIP archives in
several other programs. For example, you can write programs that do the
following:

•	 Walk a directory tree and archive just files with certain extensions, such
as .txt or .py, and nothing else.

•	 Walk a directory tree and archive every file except the .txt and .py ones.

•	 Find the folder in a directory tree that has the greatest number of files
or the folder that uses the most disk space.

Summary
Even if you are an experienced computer user, you probably handle files
manually with the mouse and keyboard. Modern file explorers make it easy
to work with a few files. But sometimes you’ll need to perform a task that
would take hours using your computer’s file explorer.

The os and shutil modules offer functions for copying, moving,
renaming, and deleting files. When deleting files, you might want to use
the send2trash module to move files to the recycle bin or trash rather than
permanently deleting them. And when writing programs that handle files,

Organizing Files 247

it’s a good idea to comment out the code that does the actual copy/move/
rename/delete and add a print() call instead so you can run the program
and verify exactly what it will do.

Often you will need to perform these operations not only on files in
one folder but also on every folder in that folder, every folder in those fold-
ers, and so on. The os.walk() function handles this trek across the folders
for you so that you can concentrate on what your program needs to do with
the files in them.

The zipfile module gives you a way of compressing and extracting files
in .ZIP archives through Python. Combined with the file-handling func-
tions of os and shutil, zipfile makes it easy to package up several files from
anywhere on your hard drive. These .ZIP files are much easier to upload to
websites or send as email attachments than many separate files.

Previous chapters of this book have provided source code for you to
copy. But when you write your own programs, they probably won’t come out
perfectly the first time. The next chapter focuses on some Python modules
that will help you analyze and debug your programs so that you can quickly
get them working correctly.

Practice Questions

1.	 What is the difference between shutil.copy() and shutil.copytree()?

2.	 What function is used to rename files?

3.	 What is the difference between the delete functions in the send2trash
and shutil modules?

4.	 ZipFile objects have a close() method just like File objects’ close() method.
What ZipFile method is equivalent to File objects’ open() method?

Practice Projects
For practice, write programs to do the following tasks.

Selective Copy
Write a program that walks through a folder tree and searches for files with
a certain file extension (such as .pdf or .jpg). Copy these files from whatever
location they are in to a new folder.

Deleting Unneeded Files
It’s not uncommon for a few unneeded but humongous files or folders to
take up the bulk of the space on your hard drive. If you’re trying to free up
room on your computer, you’ll get the most bang for your buck by deleting
the most massive of the unwanted files. But first you have to find them.

248 Chapter 10

Write a program that walks through a folder tree and searches for excep-
tionally large files or folders—say, ones that have a file size of more than
100MB. (Remember that to get a file’s size, you can use os.path.getsize() from
the os module.) Print these files with their absolute path to the screen.

Filling in the Gaps
Write a program that finds all files with a given prefix, such as spam001.txt,
spam002.txt, and so on, in a single folder and locates any gaps in the num-
bering (such as if there is a spam001.txt and spam003.txt but no spam002.txt).
Have the program rename all the later files to close this gap.

As an added challenge, write another program that can insert gaps
into numbered files so that a new file can be added.

11
D E B U G G I N G

Now that you know enough to write more
complicated programs, you may start find-

ing not-so-simple bugs in them. This chapter
covers some tools and techniques for finding

the root cause of bugs in your program to help you fix
bugs faster and with less effort.

To paraphrase an old joke among programmers, writing code accounts
for 90 percent of programming. Debugging code accounts for the other
90 percent.

Your computer will do only what you tell it to do; it won’t read your
mind and do what you intended it to do. Even professional programmers
create bugs all the time, so don’t feel discouraged if your program has
a problem.

Fortunately, there are a few tools and techniques to identify what exactly
your code is doing and where it’s going wrong. First, you will look at logging
and assertions, two features that can help you detect bugs early. In general,
the earlier you catch bugs, the easier they will be to fix.

250 Chapter 11

Second, you will look at how to use the debugger. The debugger is a
feature of Mu that executes a program one instruction at a time, giving you
a chance to inspect the values in variables while your code runs, and track
how the values change over the course of your program. This is much slower
than running the program at full speed, but it is helpful to see the actual
values in a program while it runs, rather than deducing what the values
might be from the source code.

Raising Exceptions
Python raises an exception whenever it tries to execute invalid code. In
Chapter 3, you read about how to handle Python’s exceptions with try and
except statements so that your program can recover from exceptions that
you anticipated. But you can also raise your own exceptions in your code.
Raising an exception is a way of saying, “Stop running the code in this func-
tion and move the program execution to the except statement.”

Exceptions are raised with a raise statement. In code, a raise statement
consists of the following:

•	 The raise keyword

•	 A call to the Exception() function

•	 A string with a helpful error message passed to the Exception() function

For example, enter the following into the interactive shell:

>>> raise Exception('This is the error message.')
Traceback (most recent call last):
 File "<pyshell#191>", line 1, in <module>
 raise Exception('This is the error message.')
Exception: This is the error message.

If there are no try and except statements covering the raise statement
that raised the exception, the program simply crashes and displays the
exception’s error message.

Often it’s the code that calls the function, rather than the function
itself, that knows how to handle an exception. That means you will com-
monly see a raise statement inside a function and the try and except state-
ments in the code calling the function. For example, open a new file editor
tab, enter the following code, and save the program as boxPrint.py:

def boxPrint(symbol, width, height):
 if len(symbol) != 1:

  raise Exception('Symbol must be a single character string.')
 if width <= 2:

  raise Exception('Width must be greater than 2.')

Debugging 251

 if height <= 2:
  raise Exception('Height must be greater than 2.')

 print(symbol * width)
 for i in range(height - 2):
 print(symbol + (' ' * (width - 2)) + symbol)
 print(symbol * width)

for sym, w, h in (('*', 4, 4), ('O', 20, 5), ('x', 1, 3), ('ZZ', 3, 3)):
 try:
 boxPrint(sym, w, h)

  except Exception as err:
  print('An exception happened: ' + str(err))

You can view the execution of this program at https://autbor.com/boxprint.
Here we’ve defined a boxPrint() function that takes a character, a width, and a
height, and uses the character to make a little picture of a box with that width
and height. This box shape is printed to the screen.

Say we want the character to be a single character, and the width and
height to be greater than 2. We add if statements to raise exceptions if these
requirements aren’t satisfied. Later, when we call boxPrint() with various argu-
ments, our try/except will handle invalid arguments.

This program uses the except Exception as err form of the except state-
ment . If an Exception object is returned from boxPrint() uv, this except
statement will store it in a variable named err. We can then convert the
Exception object to a string by passing it to str() to produce a user-friendly
error message . When you run this boxPrint.py, the output will look like this:

* *
* *

OOOOOOOOOOOOOOOOOOOO
O O
O O
O O
OOOOOOOOOOOOOOOOOOOO
An exception happened: Width must be greater than 2.
An exception happened: Symbol must be a single character string.

Using the try and except statements, you can handle errors more grace-
fully instead of letting the entire program crash.

Getting the Traceback as a String
When Python encounters an error, it produces a treasure trove of error infor-
mation called the traceback. The traceback includes the error message, the
line number of the line that caused the error, and the sequence of the func-
tion calls that led to the error. This sequence of calls is called the call stack.

252 Chapter 11

Open a new file editor tab in Mu, enter the following program, and
save it as errorExample.py:

def spam():
 bacon()

def bacon():
 raise Exception('This is the error message.')

spam()

When you run errorExample.py, the output will look like this:

Traceback (most recent call last):
 File "errorExample.py", line 7, in <module>
 spam()
 File "errorExample.py", line 2, in spam
 bacon()
 File "errorExample.py", line 5, in bacon
 raise Exception('This is the error message.')
Exception: This is the error message.

From the traceback, you can see that the error happened on line 5, in
the bacon() function. This particular call to bacon() came from line 2, in the
spam() function, which in turn was called on line 7. In programs where func-
tions can be called from multiple places, the call stack can help you deter-
mine which call led to the error.

Python displays the traceback whenever a raised exception goes unhan-
dled. But you can also obtain it as a string by calling traceback.format_exc().
This function is useful if you want the information from an exception’s
traceback but also want an except statement to gracefully handle the excep-
tion. You will need to import Python’s traceback module before calling
this function.

For example, instead of crashing your program right when an excep-
tion occurs, you can write the traceback information to a text file and keep
your program running. You can look at the text file later, when you’re ready
to debug your program. Enter the following into the interactive shell:

>>> import traceback
>>> try:
... raise Exception('This is the error message.')
except:
... errorFile = open('errorInfo.txt', 'w')
... errorFile.write(traceback.format_exc())
... errorFile.close()
... print('The traceback info was written to errorInfo.txt.')

111
The traceback info was written to errorInfo.txt.

Debugging 253

The 111 is the return value from the write() method, since 111 charac-
ters were written to the file. The traceback text was written to errorInfo.txt.

Traceback (most recent call last):
 File "<pyshell#28>", line 2, in <module>
Exception: This is the error message.

In “Logging” on page 255, you’ll learn how to use the logging module,
which is more effective than simply writing this error information to text files.

Assertions
An assertion is a sanity check to make sure your code isn’t doing something
obviously wrong. These sanity checks are performed by assert statements.
If the sanity check fails, then an AssertionError exception is raised. In code,
an assert statement consists of the following:

•	 The assert keyword

•	 A condition (that is, an expression that evaluates to True or False)

•	 A comma

•	 A string to display when the condition is False

In plain English, an assert statement says, “I assert that the condition
holds true, and if not, there is a bug somewhere, so immediately stop the
program.” For example, enter the following into the interactive shell:

>>> ages = [26, 57, 92, 54, 22, 15, 17, 80, 47, 73]
>>> ages.sort()
>>> ages
[15, 17, 22, 26, 47, 54, 57, 73, 80, 92]
>>> assert
ages[0] <= ages[-1] # Assert that the first age is <= the last age.

The assert statement here asserts that the first item in ages should be
less than or equal to the last one. This is a sanity check; if the code in sort()
is bug-free and did its job, then the assertion would be true.

Because the ages[0] <= ages[-1] expression evaluates to True, the assert
statement does nothing.

However, let’s pretend we had a bug in our code. Say we accidentally
called the reverse() list method instead of the sort() list method. When we
enter the following in the interactive shell, the assert statement raises an
AssertionError:

>>> ages = [26, 57, 92, 54, 22, 15, 17, 80, 47, 73]
>>> ages.reverse()
>>> ages
[73, 47, 80, 17, 15, 22, 54, 92, 57, 26]
>>> assert ages[0] <= ages[-1] # Assert that the first age is <= the last age.

254 Chapter 11

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

Unlike exceptions, your code should not handle assert statements with
try and except; if an assert fails, your program should crash. By “failing fast”
like this, you shorten the time between the original cause of the bug and
when you first notice the bug. This will reduce the amount of code you will
have to check before finding the bug’s cause.

Assertions are for programmer errors, not user errors. Assertions
should only fail while the program is under development; a user should
never see an assertion error in a finished program. For errors that your
program can run into as a normal part of its operation (such as a file not
being found or the user entering invalid data), raise an exception instead
of detecting it with an assert statement. You shouldn’t use assert statements
in place of raising exceptions, because users can choose to turn off asser-
tions. If you run a Python script with python -O myscript.py instead of python
myscript.py, Python will skip assert statements. Users might disable asser-
tions when they’re developing a program and need to run it in a production
setting that requires peak performance. (Though, in many cases, they’ll
leave assertions enabled even then.)

Assertions also aren’t a replacement for comprehensive testing. For
instance, if the previous ages example was set to [10, 3, 2, 1, 20], then
the assert ages[0] <= ages[-1] assertion wouldn’t notice that the list was
unsorted, because it just happened to have a first age that was less than or
equal to the last age, which is the only thing the assertion checked for.

Using an Assertion in a Traffic Light Simulation
Say you’re building a traffic light simulation program. The data structure
representing the stoplights at an intersection is a dictionary with keys 'ns'
and 'ew', for the stoplights facing north-south and east-west, respectively.
The values at these keys will be one of the strings 'green', 'yellow', or
'red'. The code would look something like this:

market_2nd = {'ns': 'green', 'ew': 'red'}
mission_16th = {'ns': 'red', 'ew': 'green'}

These two variables will be for the intersections of Market Street and
2nd Street, and Mission Street and 16th Street. To start the project, you
want to write a switchLights() function, which will take an intersection dic-
tionary as an argument and switch the lights.

At first, you might think that switchLights() should simply switch each
light to the next color in the sequence: Any 'green' values should change
to 'yellow', 'yellow' values should change to 'red', and 'red' values should
change to 'green'. The code to implement this idea might look like this:

def switchLights(stoplight):
 for key in stoplight.keys():

Debugging 255

 if stoplight[key] == 'green':
 stoplight[key] = 'yellow'
 elif stoplight[key] == 'yellow':
 stoplight[key] = 'red'
 elif stoplight[key] == 'red':
 stoplight[key] = 'green'

switchLights(market_2nd)

You may already see the problem with this code, but let’s pretend you
wrote the rest of the simulation code, thousands of lines long, without
noticing it. When you finally do run the simulation, the program doesn’t
crash—but your virtual cars do!

Since you’ve already written the rest of the program, you have no idea
where the bug could be. Maybe it’s in the code simulating the cars or in
the code simulating the virtual drivers. It could take hours to trace the
bug back to the switchLights() function.

But if while writing switchLights() you had added an assertion to check
that at least one of the lights is always red, you might have included the follow-
ing at the bottom of the function:

assert 'red' in stoplight.values(), 'Neither light is red! ' + str(stoplight)

With this assertion in place, your program would crash with this
error message:

Traceback (most recent call last):
 File "carSim.py", line 14, in <module>
 switchLights(market_2nd)
 File "carSim.py", line 13, in switchLights
 assert 'red' in stoplight.values(), 'Neither light is red! ' +
str(stoplight)

 AssertionError: Neither light is red! {'ns': 'yellow', 'ew': 'green'}

The important line here is the AssertionError . While your program
crashing is not ideal, it immediately points out that a sanity check failed:
neither direction of traffic has a red light, meaning that traffic could be
going both ways. By failing fast early in the program’s execution, you can
save yourself a lot of future debugging effort.

Logging
If you’ve ever put a print() statement in your code to output some variable’s
value while your program is running, you’ve used a form of logging to debug
your code. Logging is a great way to understand what’s happening in your
program and in what order it’s happening. Python’s logging module makes
it easy to create a record of custom messages that you write. These log mes-
sages will describe when the program execution has reached the logging

256 Chapter 11

function call and list any variables you have specified at that point in time.
On the other hand, a missing log message indicates a part of the code was
skipped and never executed.

Using the logging Module
To enable the logging module to display log messages on your screen as your
program runs, copy the following to the top of your program (but under
the #! python shebang line):

import logging
logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s - %(levelname)
s - %(message)s')

You don’t need to worry too much about how this works, but basically,
when Python logs an event, it creates a LogRecord object that holds informa-
tion about that event. The logging module’s basicConfig() function lets you
specify what details about the LogRecord object you want to see and how you
want those details displayed.

Say you wrote a function to calculate the factorial of a number. In math-
ematics, factorial 4 is 1 × 2 × 3 × 4, or 24. Factorial 7 is 1 × 2 × 3 × 4 × 5 × 6 × 7,
or 5,040. Open a new file editor tab and enter the following code. It has a
bug in it, but you will also enter several log messages to help yourself figure
out what is going wrong. Save the program as factorialLog.py.

import logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s
- %(message)s')
logging.debug('Start of program')

def factorial(n):
 logging.debug('Start of factorial(%s%%)' % (n))
 total = 1
 for i in range(n + 1):
 total *= i
 logging.debug('i is ' + str(i) + ', total is ' + str(total))
 logging.debug('End of factorial(%s%%)' % (n))
 return total

print(factorial(5))
logging.debug('End of program')

Here, we use the logging.debug() function when we want to print log
information. This debug() function will call basicConfig(), and a line of infor-
mation will be printed. This information will be in the format we specified
in basicConfig() and will include the messages we passed to debug(). The
print(factorial(5)) call is part of the original program, so the result is dis-
played even if logging messages are disabled.

Debugging 257

The output of this program looks like this:

2019-05-23 16:20:12,664 - DEBUG - Start of program
2019-05-23 16:20:12,664 - DEBUG - Start of factorial(5)
2019-05-23 16:20:12,665 - DEBUG - i is 0, total is 0
2019-05-23 16:20:12,668 - DEBUG - i is 1, total is 0
2019-05-23 16:20:12,670 - DEBUG - i is 2, total is 0
2019-05-23 16:20:12,673 - DEBUG - i is 3, total is 0
2019-05-23 16:20:12,675 - DEBUG - i is 4, total is 0
2019-05-23 16:20:12,678 - DEBUG - i is 5, total is 0
2019-05-23 16:20:12,680 - DEBUG - End of factorial(5)
0
2019-05-23 16:20:12,684 - DEBUG - End of program

The factorial() function is returning 0 as the factorial of 5, which isn’t
right. The for loop should be multiplying the value in total by the numbers
from 1 to 5. But the log messages displayed by logging.debug() show that the
i variable is starting at 0 instead of 1. Since zero times anything is zero, the
rest of the iterations also have the wrong value for total. Logging messages
provide a trail of breadcrumbs that can help you figure out when things
started to go wrong.

Change the for i in range(n + 1): line to for i in range(1, n + 1):, and
run the program again. The output will look like this:

2019-05-23 17:13:40,650 - DEBUG - Start of program
2019-05-23 17:13:40,651 - DEBUG - Start of factorial(5)
2019-05-23 17:13:40,651 - DEBUG - i is 1, total is 1
2019-05-23 17:13:40,654 - DEBUG - i is 2, total is 2
2019-05-23 17:13:40,656 - DEBUG - i is 3, total is 6
2019-05-23 17:13:40,659 - DEBUG - i is 4, total is 24
2019-05-23 17:13:40,661 - DEBUG - i is 5, total is 120
2019-05-23 17:13:40,661 - DEBUG - End of factorial(5)
120
2019-05-23 17:13:40,666 - DEBUG - End of program

The factorial(5) call correctly returns 120. The log messages showed
what was going on inside the loop, which led straight to the bug.

You can see that the logging.debug() calls printed out not just the strings
passed to them but also a timestamp and the word DEBUG.

Don’t Debug with the print() Function
Typing import logging and logging.basicConfig(level=logging.DEBUG, format=
'%(asctime)s - %(levelname)s - %(message)s') is somewhat unwieldy. You may
want to use print() calls instead, but don’t give in to this temptation! Once
you’re done debugging, you’ll end up spending a lot of time removing
print() calls from your code for each log message. You might even acciden-
tally remove some print() calls that were being used for nonlog messages.
The nice thing about log messages is that you’re free to fill your program

258 Chapter 11

with as many as you like, and you can always disable them later by adding
a single logging.disable(logging.CRITICAL) call. Unlike print(), the logging
module makes it easy to switch between showing and hiding log messages.

Log messages are intended for the programmer, not the user. The user
won’t care about the contents of some dictionary value you need to see to
help with debugging; use a log message for something like that. For mes-
sages that the user will want to see, like File not found or Invalid input, please
enter a number, you should use a print() call. You don’t want to deprive the
user of useful information after you’ve disabled log messages.

Logging Levels
Logging levels provide a way to categorize your log messages by importance.
There are five logging levels, described in Table 11-1 from least to most
important. Messages can be logged at each level using a different logging
function.

Table 11-1: Logging Levels in Python

Level Logging function Description

DEBUG logging.debug() The lowest level. Used for small details.
Usually you care about these messages
only when diagnosing problems.

INFO logging.info() Used to record information on general
events in your program or confirm that
things are working at their point in the
program.

WARNING logging.warning() Used to indicate a potential problem
that doesn’t prevent the program from
working but might do so in the future.

ERROR logging.error() Used to record an error that caused the
program to fail to do something.

CRITICAL logging.critical() The highest level. Used to indicate a
fatal error that has caused or is about
to cause the program to stop running
entirely.

Your logging message is passed as a string to these functions. The log-
ging levels are suggestions. Ultimately, it is up to you to decide which category
your log message falls into. Enter the following into the interactive shell:

>>> import logging
>>> logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s -
%(levelname)s - %(message)s')
>>> logging.debug('Some debugging details.')
2019-05-18 19:04:26,901 - DEBUG - Some debugging details.
>>> logging.info('The logging module is working.')
2019-05-18 19:04:35,569 - INFO - The logging module is working.
>>> logging.warning('An error message is about to be logged.')
2019-05-18 19:04:56,843 - WARNING - An error message is about to be logged.

Debugging 259

>>> logging.error('An error has occurred.')
2019-05-18 19:05:07,737 - ERROR - An error has occurred.
>>> logging.critical('The program is unable to recover!')
2019-05-18 19:05:45,794 - CRITICAL - The program is unable to recover!

The benefit of logging levels is that you can change what priority of
logging message you want to see. Passing logging.DEBUG to the basicConfig()
function’s level keyword argument will show messages from all the log-
ging levels (DEBUG being the lowest level). But after developing your
program some more, you may be interested only in errors. In that case,
you can set basicConfig()’s level argument to logging.ERROR. This will show
only ERROR and CRITICAL messages and skip the DEBUG, INFO, and
WARNING messages.

Disabling Logging
After you’ve debugged your program, you probably don’t want all these
log messages cluttering the screen. The logging.disable() function disables
these so that you don’t have to go into your program and remove all the log-
ging calls by hand. You simply pass logging.disable() a logging level, and it
will suppress all log messages at that level or lower. So if you want to disable
logging entirely, just add logging.disable(logging.CRITICAL) to your program.
For example, enter the following into the interactive shell:

>>> import logging
>>> logging.basicConfig(level=logging.INFO, format=' %(asctime)s -
%(levelname)s - %(message)s')
>>> logging.critical('Critical error! Critical error!')
2019-05-22 11:10:48,054 - CRITICAL - Critical error! Critical error!
>>> logging.disable(logging.CRITICAL)
>>> logging.critical('Critical error! Critical error!')
>>> logging.error('Error! Error!')

Since logging.disable() will disable all messages after it, you will proba-
bly want to add it near the import logging line of code in your program. This
way, you can easily find it to comment out or uncomment that call to enable
or disable logging messages as needed.

Logging to a File
Instead of displaying the log messages to the screen, you can write them to
a text file. The logging.basicConfig() function takes a filename keyword argu-
ment, like so:

import logging
logging.basicConfig(filename='myProgramLog.txt', level=logging.DEBUG, format='
%(asctime)s - %(levelname)s - %(message)s')

The log messages will be saved to myProgramLog.txt. While logging mes-
sages are helpful, they can clutter your screen and make it hard to read

260 Chapter 11

the program’s output. Writing the logging messages to a file will keep your
screen clear and store the messages so you can read them after running
the program. You can open this text file in any text editor, such as Notepad
or TextEdit.

Mu’s Debugger
The debugger is a feature of the Mu editor, IDLE, and other editor software
that allows you to execute your program one line at a time. The debugger
will run a single line of code and then wait for you to tell it to continue.
By running your program “under the debugger” like this, you can take as
much time as you want to examine the values in the variables at any given
point during the program’s lifetime. This is a valuable tool for tracking
down bugs.

To run a program under Mu’s debugger, click the Debug button in the
top row of buttons, next to the Run button. Along with the usual output pane
at the bottom, the Debug Inspector pane will open along the right side of
the window. This pane lists the current value of variables in your program.
In Figure 11-1, the debugger has paused the execution of the program just
before it would have run the first line of code. You can see this line high-
lighted in the file editor.

Figure 11-1: Mu running a program under the debugger

Debugging mode also adds the following new buttons to the top of the
editor: Continue, Step Over, Step In, and Step Out. The usual Stop button
is also available.

Debugging 261

Continue
Clicking the Continue button will cause the program to execute normally
until it terminates or reaches a breakpoint. (I will describe breakpoints later
in this chapter.) If you are done debugging and want the program to con-
tinue normally, click the Continue button.

Step In
Clicking the Step In button will cause the debugger to execute the next line
of code and then pause again. If the next line of code is a function call, the
debugger will “step into” that function and jump to the first line of code of
that function.

Step Over
Clicking the Step Over button will execute the next line of code, similar to
the Step In button. However, if the next line of code is a function call, the
Step Over button will “step over” the code in the function. The function’s
code will be executed at full speed, and the debugger will pause as soon as
the function call returns. For example, if the next line of code calls a spam()
function but you don’t really care about code inside this function, you can
click Step Over to execute the code in the function at normal speed, and
then pause when the function returns. For this reason, using the Over but-
ton is more common than using the Step In button.

Step Out
Clicking the Step Out button will cause the debugger to execute lines of
code at full speed until it returns from the current function. If you have
stepped into a function call with the Step In button and now simply want to
keep executing instructions until you get back out, click the Out button to
“step out” of the current function call.

Stop
If you want to stop debugging entirely and not bother to continue executing
the rest of the program, click the Stop button. The Stop button will imme-
diately terminate the program.

Debugging a Number Adding Program
Open a new file editor tab and enter the following code:

print('Enter the first number to add:')
first = input()
print('Enter the second number to add:')
second = input()
print('Enter the third number to add:')
third = input()
print('The sum is ' + first + second + third)

262 Chapter 11

Save it as buggyAddingProgram.py and run it first without the debugger
enabled. The program will output something like this:

Enter the first number to add:
5
Enter the second number to add:
3
Enter the third number to add:
42
The sum is 5342

The program hasn’t crashed, but the sum is obviously wrong. Run the
program again, this time under the debugger.

When you click the Debug button, the program pauses on line 1, which
is the line of code it is about to execute. Mu should look like Figure 10-1.

Click the Step Over button once to execute the first print() call. You
should use Step Over instead of Step In here, since you don’t want to step
into the code for the print() function. (Although Mu should prevent the
debugger from entering Python’s built-in functions.) The debugger moves
on to line 2, and highlights line 2 in the file editor, as shown in Figure 11-2.
This shows you where the program execution currently is.

Figure 11-2: The Mu editor window after clicking Step Over

Click Step Over again to execute the input() function call. The highlight-
ing will go away while Mu waits for you to type something for the input() call
into the output pane. Enter 5 and press Enter. The highlighting will return.

Keep clicking Step Over, and enter 3 and 42 as the next two numbers.
When the debugger reaches line 7, the final print() call in the program, the
Mu editor window should look like Figure 11-3.

Debugging 263

Figure 11-3: The Debug Inspector pane on the right side shows that the
variables are set to strings instead of integers, causing the bug.

In the Debug Inspector pane, you should see that the first, second, and
third variables are set to string values '5', '3', and '42' instead of integer
values 5, 3, and 42. When the last line is executed, Python concatenates
these strings instead of adding the numbers together, causing the bug.

Stepping through the program with the debugger is helpful but can also
be slow. Often you’ll want the program to run normally until it reaches a cer-
tain line of code. You can configure the debugger to do this with breakpoints.

Breakpoints
A breakpoint can be set on a specific line of code and forces the debugger to
pause whenever the program execution reaches that line. Open a new file
editor tab and enter the following program, which simulates flipping a coin
1,000 times. Save it as coinFlip.py.

import random
heads = 0
for i in range(1, 1001):

  if random.randint(0, 1) == 1:
 heads = heads + 1
 if i == 500:

  print('Halfway done!')
print('Heads came up ' + str(heads) + ' times.')

The random.randint(0, 1) call  will return 0 half of the time and 1 the
other half of the time. This can be used to simulate a 50/50 coin flip where
1 represents heads. When you run this program without the debugger, it
quickly outputs something like the following:

Halfway done!
Heads came up 490 times.

264 Chapter 11

If you ran this program under the debugger, you would have to click
the Step Over button thousands of times before the program terminated.
If you were interested in the value of heads at the halfway point of the pro-
gram’s execution, when 500 of 1,000 coin flips have been completed, you
could instead just set a breakpoint on the line print('Halfway done!') . To
set a breakpoint, click the line number in the file editor to cause a red dot
to appear, marking the breakpoint like in Figure 11-4.

Figure 11-4: Setting a breakpoint causes a red dot (circled) to appear
next to the line number.

You don’t want to set a breakpoint on the if statement line, since the
if statement is executed on every single iteration through the loop. When
you set the breakpoint on the code in the if statement, the debugger breaks
only when the execution enters the if clause.

The line with the breakpoint will have a red dot next to it. When you
run the program under the debugger, it will start in a paused state at the
first line, as usual. But if you click Continue, the program will run at full
speed until it reaches the line with the breakpoint set on it. You can then
click Continue, Step Over, Step In, or Step Out to continue as normal.

If you want to remove a breakpoint, click the line number again.
The red dot will go away, and the debugger will not break on that line
in the future.

Summary
Assertions, exceptions, logging, and the debugger are all valuable tools to
find and prevent bugs in your program. Assertions with the Python assert
statement are a good way to implement “sanity checks” that give you an
early warning when a necessary condition doesn’t hold true. Assertions are
only for errors that the program shouldn’t try to recover from and should
fail fast. Otherwise, you should raise an exception.

Debugging 265

An exception can be caught and handled by the try and except state-
ments. The logging module is a good way to look into your code while it’s
running and is much more convenient to use than the print() function
because of its different logging levels and ability to log to a text file.

The debugger lets you step through your program one line at a time.
Alternatively, you can run your program at normal speed and have the
debugger pause execution whenever it reaches a line with a breakpoint
set. Using the debugger, you can see the state of any variable’s value at any
point during the program’s lifetime.

These debugging tools and techniques will help you write programs
that work. Accidentally introducing bugs into your code is a fact of life, no
matter how many years of coding experience you have.

Practice Questions

1.	 Write an assert statement that triggers an AssertionError if the variable
spam is an integer less than 10.

2.	 Write an assert statement that triggers an AssertionError if the variables
eggs and bacon contain strings that are the same as each other, even if
their cases are different (that is, 'hello' and 'hello' are considered the
same, and 'goodbye' and 'GOODbye' are also considered the same).

3.	 Write an assert statement that always triggers an AssertionError.

4.	 What are the two lines that your program must have in order to be able
to call logging.debug()?

5.	 What are the two lines that your program must have in order to have
logging.debug() send a logging message to a file named programLog.txt?

6.	 What are the five logging levels?

7.	 What line of code can you add to disable all logging messages in
your program?

8.	 Why is using logging messages better than using print() to display
the same message?

9.	 What are the differences between the Step Over, Step In, and Step
Out buttons in the debugger?

10.	 After you click Continue, when will the debugger stop?

11.	 What is a breakpoint?

12.	 How do you set a breakpoint on a line of code in Mu?

266 Chapter 11

Practice Project
For practice, write a program that does the following.

Debugging Coin Toss
The following program is meant to be a simple coin toss guessing game. The
player gets two guesses (it’s an easy game). However, the program has several
bugs in it. Run through the program a few times to find the bugs that keep
the program from working correctly.

import random
guess = ''
while guess not in ('heads', 'tails'):
 print('Guess the coin toss! Enter heads or tails:')
 guess = input()
toss = random.randint(0, 1) # 0 is tails, 1 is heads
if toss == guess:
 print('You got it!')
else:
 print('Nope! Guess again!')
 guesss = input()
 if toss == guess:
 print('You got it!')
 else:
 print('Nope. You are really bad at this game.')

12
W E B S C R A P I N G

In those rare, terrifying moments when
I’m without Wi-Fi, I realize just how much

of what I do on the computer is really what I
do on the internet. Out of sheer habit I’ll find

myself trying to check email, read friends’ Twitter
feeds, or answer the question, “Did Kurtwood Smith
have any major roles before he was in the original
1987 RoboCop?”1

Since so much work on a computer involves going on the internet,
it’d be great if your programs could get online. Web scraping is the term
for using a program to download and process content from the web. For
example, Google runs many web scraping programs to index web pages for

1. The answer is no.

268 Chapter 12

its search engine. In this chapter, you will learn about several modules that
make it easy to scrape web pages in Python.

webbrowser  Comes with Python and opens a browser to a specific page.

requests  Downloads files and web pages from the internet.

bs4  Parses HTML, the format that web pages are written in.

selenium  Launches and controls a web browser. The selenium module is
able to fill in forms and simulate mouse clicks in this browser.

Project: mapIt.py with the webbrowser Module
The webbrowser module’s open() function can launch a new browser to a spec-
ified URL. Enter the following into the interactive shell:

>>> import webbrowser
>>> webbrowser.open('https://inventwithpython.com/')

A web browser tab will open to the URL https://inventwithpython.com/.
This is about the only thing the webbrowser module can do. Even so, the
open() function does make some interesting things possible. For example,
it’s tedious to copy a street address to the clipboard and bring up a map of
it on Google Maps. You could take a few steps out of this task by writing a
simple script to automatically launch the map in your browser using the
contents of your clipboard. This way, you only have to copy the address to a
clipboard and run the script, and the map will be loaded for you.

This is what your program does:

1.	 Gets a street address from the command line arguments or clipboard

2.	 Opens the web browser to the Google Maps page for the address

This means your code will need to do the following:

1.	 Read the command line arguments from sys.argv.

2.	 Read the clipboard contents.

3.	 Call the webbrowser.open() function to open the web browser.

Open a new file editor tab and save it as mapIt.py.

Step 1: Figure Out the URL
Based on the instructions in Appendix B, set up mapIt.py so that when you
run it from the command line, like so . . .

C:\> mapit 870 Valencia St, San Francisco, CA 94110

. . . the script will use the command line arguments instead of the clip-
board. If there are no command line arguments, then the program will
know to use the contents of the clipboard.

Web Scraping 269

First you need to figure out what URL to use for a given street address.
When you load https://maps.google.com/ in the browser and search for an
address, the URL in the address bar looks something like this: https://www​
.google.com/maps/place/870+Valencia+St/@37.7590311,-122.4215096,17z/data=!3
m1!4b1!4m2!3m1!1s0x808f7e3dadc07a37:0xc86b0b2bb93b73d8.

The address is in the URL, but there’s a lot of additional text there as
well. Websites often add extra data to URLs to help track visitors or custom-
ize sites. But if you try just going to https://www.google.com/maps/place/870+
Valencia+St+San+Francisco+CA/, you’ll find that it still brings up the correct
page. So your program can be set to open a web browser to 'https://www​
.google.com/maps/place/your_address_string' (where your_address_string is the
address you want to map).

Step 2: Handle the Command Line Arguments
Make your code look like this:

#! python3
mapIt.py - Launches a map in the browser using an address from the
command line or clipboard.

import webbrowser, sys
if len(sys.argv) > 1:
 # Get address from command line.
 address = ' '.join(sys.argv[1:])

TODO: Get address from clipboard.

After the program’s #! shebang line, you need to import the webbrowser
module for launching the browser and import the sys module for reading the
potential command line arguments. The sys.argv variable stores a list of the
program’s filename and command line arguments. If this list has more than
just the filename in it, then len(sys.argv) evaluates to an integer greater than
1, meaning that command line arguments have indeed been provided.

Command line arguments are usually separated by spaces, but in this case,
you want to interpret all of the arguments as a single string. Since sys.argv is a
list of strings, you can pass it to the join() method, which returns a single string
value. You don’t want the program name in this string, so instead of sys.argv,
you should pass sys.argv[1:] to chop off the first element of the array. The final
string that this expression evaluates to is stored in the address variable.

If you run the program by entering this into the command line . . .

mapit 870 Valencia St, San Francisco, CA 94110

. . . the sys.argv variable will contain this list value:

['mapIt.py', '870', 'Valencia', 'St, ', 'San', 'Francisco, ', 'CA', '94110']

The address variable will contain the string '870 Valencia St, San
Francisco, CA 94110'.

https://www.google.com/maps/place/870+Valencia+St/@37.7590311,-122.4215096,17z/data=!3m1!4b1!4m2!3m
https://www.google.com/maps/place/870+Valencia+St/@37.7590311,-122.4215096,17z/data=!3m1!4b1!4m2!3m
https://www.google.com/maps/place/870+Valencia+St/@37.7590311,-122.4215096,17z/data=!3m1!4b1!4m2!3m
https://www.google.com/maps/place/870+Valencia+St+San+Francisco+CA/
https://www.google.com/maps/place/870+Valencia+St+San+Francisco+CA/

270 Chapter 12

Step 3: Handle the Clipboard Content and Launch the Browser
Make your code look like the following:

#! python3
mapIt.py - Launches a map in the browser using an address from the
command line or clipboard.

import webbrowser, sys, pyperclip
if len(sys.argv) > 1:
 # Get address from command line.
 address = ' '.join(sys.argv[1:])
else:
 # Get address from clipboard.
 address = pyperclip.paste()

webbrowser.open('https://www.google.com/maps/place/' + address)

If there are no command line arguments, the program will assume the
address is stored on the clipboard. You can get the clipboard content with
pyperclip.paste() and store it in a variable named address. Finally, to launch
a web browser with the Google Maps URL, call webbrowser.open().

While some of the programs you write will perform huge tasks that save
you hours, it can be just as satisfying to use a program that conveniently
saves you a few seconds each time you perform a common task, such as get-
ting a map of an address. Table 12-1 compares the steps needed to display
a map with and without mapIt.py.

Table 12-1: Getting a Map with and Without mapIt.py

Manually getting a map Using mapIt.py

1.	 Highlight the address.
2.	 Copy the address.
3.	 Open the web browser.
4.	 Go to https://maps.google.com/.
5.	 Click the address text field.
6.	 Paste the address.
7.	 Press enter.

1.	 Highlight the address.
2.	 Copy the address.
3.	 Run mapIt.py.

See how mapIt.py makes this task less tedious?

Ideas for Similar Programs
As long as you have a URL, the webbrowser module lets users cut out the step
of opening the browser and directing themselves to a website. Other pro-
grams could use this functionality to do the following:

•	 Open all links on a page in separate browser tabs.

•	 Open the browser to the URL for your local weather.

•	 Open several social network sites that you regularly check.

Web Scraping 271

Downloading Files from the Web with the requests Module
The requests module lets you easily download files from the web without
having to worry about complicated issues such as network errors, connec-
tion problems, and data compression. The requests module doesn’t come
with Python, so you’ll have to install it first. From the command line, run
pip install --user requests. (Appendix A has additional details on how to
install third-party modules.)

The requests module was written because Python’s urllib2 module is
too complicated to use. In fact, take a permanent marker and black out this
entire paragraph. Forget I ever mentioned urllib2. If you need to download
things from the web, just use the requests module.

Next, do a simple test to make sure the requests module installed itself
correctly. Enter the following into the interactive shell:

>>> import requests

If no error messages show up, then the requests module has been suc-
cessfully installed.

Downloading a Web Page with the requests.get() Function
The requests.get() function takes a string of a URL to download. By call-
ing type() on requests.get()’s return value, you can see that it returns a
Response object, which contains the response that the web server gave for
your request. I’ll explain the Response object in more detail later, but for
now, enter the following into the interactive shell while your computer is
connected to the internet:

>>> import requests
 >>> res = requests.get('https://automatetheboringstuff.com/files/rj.txt')

>>> type(res)
<class 'requests.models.Response'>

 >>> res.status_code == requests.codes.ok
True
>>> len(res.text)
178981
>>> print(res.text[:250])
The Project Gutenberg EBook of Romeo and Juliet, by William Shakespeare

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Proje

The URL goes to a text web page for the entire play of Romeo and
Juliet, provided on this book’s site . You can tell that the request for this
web page succeeded by checking the status_code attribute of the Response
object. If it is equal to the value of requests.codes.ok, then everything went
fine . (Incidentally, the status code for “OK” in the HTTP protocol is 200.
You may already be familiar with the 404 status code for “Not Found.”)

272 Chapter 12

You can find a complete list of HTTP status codes and their meanings at
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

If the request succeeded, the downloaded web page is stored as a
string in the Response object’s text variable. This variable holds a large
string of the entire play; the call to len(res.text) shows you that it is more
than 178,000 characters long. Finally, calling print(res.text[:250]) displays
only the first 250 characters.

If the request failed and displayed an error message, like “Failed to estab-
lish a new connection” or “Max retries exceeded,” then check your internet
connection. Connecting to servers can be quite complicated, and I can’t give
a full list of possible problems here. You can find common causes of your
error by doing a web search of the error message in quotes.

Checking for Errors
As you’ve seen, the Response object has a status_code attribute that can be
checked against requests.codes.ok (a variable that has the integer value 200)
to see whether the download succeeded. A simpler way to check for success
is to call the raise_for_status() method on the Response object. This will raise
an exception if there was an error downloading the file and will do nothing
if the download succeeded. Enter the following into the interactive shell:

>>> res = requests.get('https://inventwithpython.com/page_that_does_not_exist')
>>> res.raise_for_status()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

 File "C:\Users\Al\AppData\Local\Programs\Python\Python37\lib\site-packages\requests\models​
.py", line 940, in raise_for_status
 raise HTTPError(http_error_msg, response=self)
requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://inventwithpython​
.com/page_that_does_not_exist.html

The raise_for_status() method is a good way to ensure that a program
halts if a bad download occurs. This is a good thing: You want your program
to stop as soon as some unexpected error happens. If a failed download isn’t a
deal breaker for your program, you can wrap the raise_for_status() line with
try and except statements to handle this error case without crashing.

import requests
res = requests.get('https://inventwithpython.com/page_that_does_not_exist')
try:
 res.raise_for_status()
except Exception as exc:
 print('There was a problem: %s' % (exc))

This raise_for_status() method call causes the program to output
the following:

There was a problem: 404 Client Error: Not Found for url: https://
inventwithpython.com/page_that_does_not_exist.html

Web Scraping 273

Always call raise_for_status() after calling requests.get(). You want to be
sure that the download has actually worked before your program continues.

Saving Downloaded Files to the Hard Drive
From here, you can save the web page to a file on your hard drive with the
standard open() function and write() method. There are some slight differ-
ences, though. First, you must open the file in write binary mode by passing
the string 'wb' as the second argument to open(). Even if the page is in plain-
text (such as the Romeo and Juliet text you downloaded earlier), you need to
write binary data instead of text data in order to maintain the Unicode encod-
ing of the text.

To write the web page to a file, you can use a for loop with the Response
object’s iter_content() method.

>>> import requests
>>> res = requests.get('https://automatetheboringstuff.com/files/rj.txt')
>>> res.raise_for_status()
>>> playFile = open('RomeoAndJuliet.txt', 'wb')
>>> for chunk in res.iter_content(100000):
 playFile.write(chunk)

100000
78981
>>> playFile.close()

The iter_content() method returns “chunks” of the content on each
iteration through the loop. Each chunk is of the bytes data type, and you
get to specify how many bytes each chunk will contain. One hundred
thousand bytes is generally a good size, so pass 100000 as the argument
to iter_content().

The file RomeoAndJuliet.txt will now exist in the current working direc-
tory. Note that while the filename on the website was rj.txt, the file on your
hard drive has a different filename. The requests module simply handles
downloading the contents of web pages. Once the page is downloaded,
it is simply data in your program. Even if you were to lose your internet

UNICODE E NCODINGS

Unicode encodings are beyond the scope of this book, but you can learn more
about them from these web pages:

•	 Joel on Software: The Absolute Minimum Every Software Developer
Absolutely, Positively Must Know About Unicode and Character Sets
(No Excuses!): https://www.joelonsoftware.com/articles/Unicode.html

•	 Pragmatic Unicode: https://nedbatchelder.com/text/unipain.html

https://nedbatchelder.com/text/unipain.html

274 Chapter 12

connection after downloading the web page, all the page data would still be
on your computer.

The write() method returns the number of bytes written to the file. In
the previous example, there were 100,000 bytes in the first chunk, and the
remaining part of the file needed only 78,981 bytes.

To review, here’s the complete process for downloading and saving a file:

1.	 Call requests.get() to download the file.

2.	 Call open() with 'wb' to create a new file in write binary mode.

3.	 Loop over the Response object’s iter_content() method.

4.	 Call write() on each iteration to write the content to the file.

5.	 Call close() to close the file.

That’s all there is to the requests module! The for loop and iter_content()
stuff may seem complicated compared to the open()/write()/close() work-
flow you’ve been using to write text files, but it’s to ensure that the requests
module doesn’t eat up too much memory even if you download massive
files. You can learn about the requests module’s other features from https://
requests.readthedocs.org/.

HTML
Before you pick apart web pages, you’ll learn some HTML basics. You’ll also
see how to access your web browser’s powerful developer tools, which will
make scraping information from the web much easier.

Resources for Learning HTML
Hypertext Markup Language (HTML) is the format that web pages are written
in. This chapter assumes you have some basic experience with HTML, but
if you need a beginner tutorial, I suggest one of the following sites:

•	 https://developer.mozilla.org/en-US/learn/html/

•	 https://htmldog.com/guides/html/beginner/

•	 https://www.codecademy.com/learn/learn-html

A Quick Refresher
In case it’s been a while since you’ve looked at any HTML, here’s a quick
overview of the basics. An HTML file is a plaintext file with the .html file
extension. The text in these files is surrounded by tags, which are words
enclosed in angle brackets. The tags tell the browser how to format the web
page. A starting tag and closing tag can enclose some text to form an ele-
ment. The text (or inner HTML) is the content between the starting and clos-
ing tags. For example, the following HTML will display Hello, world! in the
browser, with Hello in bold:

Hello, world!

https://developer.mozilla.org/en-US/learn/html/

Web Scraping 275

This HTML will look like Figure 12-1 in a browser.

Figure 12-1: Hello, world! rendered in the browser

The opening tag says that the enclosed text will appear in bold.
The closing tags tells the browser where the end of the bold text is.

There are many different tags in HTML. Some of these tags have extra
properties in the form of attributes within the angle brackets. For example,
the <a> tag encloses text that should be a link. The URL that the text links
to is determined by the href attribute. Here’s an example:

Al's free Python books.

This HTML will look like Figure 12-2 in a browser.

Figure 12-2: The link rendered in the browser

Some elements have an id attribute that is used to uniquely identify
the element in the page. You will often instruct your programs to seek
out an element by its id attribute, so figuring out an element’s id attribute
using the browser’s developer tools is a common task in writing web scrap-
ing programs.

Viewing the Source HTML of a Web Page
You’ll need to look at the HTML source of the web pages that your pro-
grams will work with. To do this, right-click (or ctrl-click on macOS) any
web page in your web browser, and select View Source or View page source
to see the HTML text of the page (see Figure 12-3). This is the text your
browser actually receives. The browser knows how to display, or render, the
web page from this HTML.

276 Chapter 12

Figure 12-3: Viewing the source of a web page

I highly recommend viewing the source HTML of some of your favor-
ite sites. It’s fine if you don’t fully understand what you are seeing when
you look at the source. You won’t need HTML mastery to write simple web
scraping programs—after all, you won’t be writing your own websites. You
just need enough knowledge to pick out data from an existing site.

Opening Your Browser’s Developer Tools
In addition to viewing a web page’s source, you can look through a page’s
HTML using your browser’s developer tools. In Chrome and Internet
Explorer for Windows, the developer tools are already installed, and you
can press F12 to make them appear (see Figure 12-4). Pressing F12 again
will make the developer tools disappear. In Chrome, you can also bring up
the developer tools by selecting ViewDeveloperDeveloper Tools. In
macOS, pressing -option-I will open Chrome’s Developer Tools.

Web Scraping 277

Figure 12-4: The Developer Tools window in the Chrome browser

In Firefox, you can bring up the Web Developer Tools Inspector by
pressing ctrl-shift-C on Windows and Linux or by pressing -option-C
on macOS. The layout is almost identical to Chrome’s developer tools.

In Safari, open the Preferences window, and on the Advanced pane
check the Show Develop menu in the menu bar option. After it has been
enabled, you can bring up the developer tools by pressing -option-I.

After enabling or installing the developer tools in your browser, you
can right-click any part of the web page and select Inspect Element from
the context menu to bring up the HTML responsible for that part of the
page. This will be helpful when you begin to parse HTML for your web
scraping programs.

DON’T USE R EGUL A R E X PR E SSIONS TO PA RSE H T ML

Locating a specific piece of HTML in a string seems like a perfect case for
regular expressions. However, I advise you against it. There are many differ-
ent ways that HTML can be formatted and still be considered valid HTML, but
trying to capture all these possible variations in a regular expression can be
tedious and error prone. A module developed specifically for parsing HTML,
such as bs4, will be less likely to result in bugs.

You can find an extended argument for why you shouldn’t parse HTML
with regular expressions at https://stackoverflow.com/a/1732454/1893164/.

https://stackoverflow.com/a/1732454/1893164/

278 Chapter 12

Using the Developer Tools to Find HTML Elements
Once your program has downloaded a web page using the requests module,
you will have the page’s HTML content as a single string value. Now you need
to figure out which part of the HTML corresponds to the information on the
web page you’re interested in.

This is where the browser’s developer tools can help. Say you want to
write a program to pull weather forecast data from https://weather.gov/.
Before writing any code, do a little research. If you visit the site and
search for the 94105 ZIP code, the site will take you to a page showing
the forecast for that area.

What if you’re interested in scraping the weather information for that
ZIP code? Right-click where it is on the page (or control-click on macOS)
and select Inspect Element from the context menu that appears. This
will bring up the Developer Tools window, which shows you the HTML
that produces this particular part of the web page. Figure 12-5 shows the
developer tools open to the HTML of the nearest forecast. Note that if the
https://weather.gov/ site changes the design of its web pages, you’ll need to
repeat this process to inspect the new elements.

Figure 12-5: Inspecting the element that holds forecast text with the developer tools

Web Scraping 279

From the developer tools, you can see that the HTML responsible for the
forecast part of the web page is <div class="col-sm-10 forecast-text"​>Sunny,
with a high near 64. West wind 11 to 16 mph, with gusts as high as 21 mph​

.</div>. This is exactly what you were looking for! It seems that the forecast
information is contained inside a <div> element with the forecast-text CSS
class. Right-click on this element in the browser’s developer console, and
from the context menu that appears, select CopyCSS Selector. This will
copy a string such as 'div.row-odd:nth-child(1) > div:nth-child(2)' to the clip-
board. You can use this string for Beautiful Soup’s select() or Selenium’s
find_element_by_css_selector() methods, as explained later in this chapter.
Now that you know what you’re looking for, the Beautiful Soup module will
help you find it in the string.

Parsing HTML with the bs4 Module
Beautiful Soup is a module for extracting information from an HTML
page (and is much better for this purpose than regular expressions). The
Beautiful Soup module’s name is bs4 (for Beautiful Soup, version 4). To
install it, you will need to run pip install --user beautifulsoup4 from the
command line. (Check out Appendix A for instructions on installing third-
party modules.) While beautifulsoup4 is the name used for installation, to
import Beautiful Soup you run import bs4.

For this chapter, the Beautiful Soup examples will parse (that is, ana-
lyze and identify the parts of) an HTML file on the hard drive. Open a
new file editor tab in Mu, enter the following, and save it as example.html.
Alternatively, download it from https://nostarch.com/automatestuff2/.

<!-- This is the example.html example file. -->

<html><head><title>The Website Title</title></head>
<body>
<p>Download my Python book from <a href="https://
inventwithpython.com">my website.</p>
<p class="slogan">Learn Python the easy way!</p>
<p>By Al Sweigart</p>
</body></html>

As you can see, even a simple HTML file involves many different tags
and attributes, and matters quickly get confusing with complex websites.
Thankfully, Beautiful Soup makes working with HTML much easier.

280 Chapter 12

Creating a BeautifulSoup Object from HTML
The bs4.BeautifulSoup() function needs to be called with a string contain-
ing the HTML it will parse. The bs4.BeautifulSoup() function returns a
BeautifulSoup object. Enter the following into the interactive shell while
your computer is connected to the internet:

>>> import requests, bs4
>>> res = requests.get('https://nostarch.com')
>>> res.raise_for_status()
>>> noStarchSoup = bs4.BeautifulSoup(res.text, 'html.parser')
>>> type(noStarchSoup)
<class 'bs4.BeautifulSoup'>

This code uses requests.get() to download the main page from the No
Starch Press website and then passes the text attribute of the response to
bs4.BeautifulSoup(). The BeautifulSoup object that it returns is stored in a
variable named noStarchSoup.

You can also load an HTML file from your hard drive by passing a
File object to bs4.BeautifulSoup() along with a second argument that tells
Beautiful Soup which parser to use to analyze the HTML.

Enter the following into the interactive shell (after making sure the
example.html file is in the working directory):

>>> exampleFile = open('example.html')
>>> exampleSoup = bs4.BeautifulSoup(exampleFile, 'html.parser')
>>> type(exampleSoup)
<class 'bs4.BeautifulSoup'>

The 'html.parser' parser used here comes with Python. However, you
can use the faster 'lxml' parser if you install the third-party lxml module.
Follow the instructions in Appendix A to install this module by running pip
install --user lxml. Forgetting to include this second argument will result in
a UserWarning: No parser was explicitly specified warning.

Once you have a BeautifulSoup object, you can use its methods to locate
specific parts of an HTML document.

Finding an Element with the select() Method
You can retrieve a web page element from a BeautifulSoup object by calling
the select()method and passing a string of a CSS selector for the element you
are looking for. Selectors are like regular expressions: they specify a pattern
to look for—in this case, in HTML pages instead of general text strings.

A full discussion of CSS selector syntax is beyond the scope of this
book (there’s a good selector tutorial in the resources at https://nostarch.com
/automatestuff2/), but here’s a short introduction to selectors. Table 12-2
shows examples of the most common CSS selector patterns.

https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/

Web Scraping 281

Table 12-2: Examples of CSS Selectors

Selector passed to the select() method Will match . . .

soup.select('div') All elements named <div>
soup.select('#author') The element with an id attribute of author
soup.select('.notice') All elements that use a CSS class attribute

named notice
soup.select('div span') All elements named that are within

an element named <div>
soup.select('div > span') All elements named that are

directly within an element named <div>,
with no other element in between

soup.select('input[name]') All elements named <input> that have a
name attribute with any value

soup.select('input[type="button"]') All elements named <input> that have an
attribute named type with value button

The various selector patterns can be combined to make sophisticated
matches. For example, soup.select('p #author') will match any element that
has an id attribute of author, as long as it is also inside a <p> element. Instead
of writing the selector yourself, you can also right-click on the element in
your browser and select Inspect Element. When the browser’s developer
console opens, right-click on the element’s HTML and select CopyCSS
Selector to copy the selector string to the clipboard and paste it into your
source code.

The select() method will return a list of Tag objects, which is how
Beautiful Soup represents an HTML element. The list will contain one Tag
object for every match in the BeautifulSoup object’s HTML. Tag values can
be passed to the str() function to show the HTML tags they represent. Tag
values also have an attrs attribute that shows all the HTML attributes of the
tag as a dictionary. Using the example.html file from earlier, enter the follow-
ing into the interactive shell:

>>> import bs4
>>> exampleFile = open('example.html')
>>> exampleSoup = bs4.BeautifulSoup(exampleFile.read(), 'html.parser')
>>> elems = exampleSoup.select('#author')
>>> type(elems) # elems is a list of Tag objects.
<class 'list'>
>>> len(elems)
1
>>> type(elems[0])
<class 'bs4.element.Tag'>
>>> str(elems[0]) # The Tag object as a string.
'Al Sweigart'
>>> elems[0].getText()
'Al Sweigart'
>>> elems[0].attrs
{'id': 'author'}

282 Chapter 12

This code will pull the element with id="author" out of our example
HTML. We use select('#author') to return a list of all the elements with
id="author". We store this list of Tag objects in the variable elems, and
len(elems) tells us there is one Tag object in the list; there was one match.
Calling getText() on the element returns the element’s text, or inner
HTML. The text of an element is the content between the opening and
closing tags: in this case, 'Al Sweigart'.

Passing the element to str() returns a string with the starting and clos-
ing tags and the element’s text. Finally, attrs gives us a dictionary with the
element’s attribute, 'id', and the value of the id attribute, 'author'.

You can also pull all the <p> elements from the BeautifulSoup object.
Enter this into the interactive shell:

>>> pElems = exampleSoup.select('p')
>>> str(pElems[0])
'<p>Download my Python book from <a href="https://
inventwithpython.com">my website.</p>'
>>> pElems[0].getText()
'Download my Python book from my website.'
>>> str(pElems[1])
'<p class="slogan">Learn Python the easy way!</p>'
>>> pElems[1].getText()
'Learn Python the easy way!'
>>> str(pElems[2])
'<p>By Al Sweigart</p>'
>>> pElems[2].getText()
'By Al Sweigart'

This time, select() gives us a list of three matches, which we store in
pElems. Using str() on pElems[0], pElems[1], and pElems[2] shows you each ele-
ment as a string, and using getText() on each element shows you its text.

Getting Data from an Element’s Attributes
The get() method for Tag objects makes it simple to access attribute values
from an element. The method is passed a string of an attribute name and
returns that attribute’s value. Using example.html, enter the following into
the interactive shell:

>>> import bs4
>>> soup = bs4.BeautifulSoup(open('example.html'), 'html.parser')
>>> spanElem = soup.select('span')[0]
>>> str(spanElem)
'Al Sweigart'
>>> spanElem.get('id')
'author'
>>> spanElem.get('some_nonexistent_addr') == None
True
>>> spanElem.attrs
{'id': 'author'}

Web Scraping 283

Here we use select() to find any elements and then store the
first matched element in spanElem. Passing the attribute name 'id' to get()
returns the attribute’s value, 'author'.

Project: Opening All Search Results
Whenever I search a topic on Google, I don’t look at just one search result
at a time. By middle-clicking a search result link (or clicking while hold-
ing ctrl), I open the first several links in a bunch of new tabs to read later.
I search Google often enough that this workflow—opening my browser,
searching for a topic, and middle-clicking several links one by one—is
tedious. It would be nice if I could simply type a search term on the com-
mand line and have my computer automatically open a browser with all
the top search results in new tabs. Let’s write a script to do this with the
search results page for the Python Package Index at https://pypi.org/. A pro-
gram like this can be adapted to many other websites, although the Google
and DuckDuckGo often employ measures that make scraping their search
results pages difficult.

This is what your program does:

1.	 Gets search keywords from the command line arguments

2.	 Retrieves the search results page

3.	 Opens a browser tab for each result

This means your code will need to do the following:

1.	 Read the command line arguments from sys.argv.

2.	 Fetch the search result page with the requests module.

3.	 Find the links to each search result.

4.	 Call the webbrowser.open() function to open the web browser.

Open a new file editor tab and save it as searchpypi.py.

Step 1: Get the Command Line Arguments and Request the Search Page
Before coding anything, you first need to know the URL of the search result
page. By looking at the browser’s address bar after doing a search, you can
see that the result page has a URL like https://pypi.org/search/?q=<SEARCH​
_TERM_HERE>. The requests module can download this page and then
you can use Beautiful Soup to find the search result links in the HTML.
Finally, you’ll use the webbrowser module to open those links in browser tabs.

Make your code look like the following:

#! python3
searchpypi.py - Opens several search results.

import requests, sys, webbrowser, bs4

https://pypi.org/search/?q=<SEARCH_TERM_HERE>
https://pypi.org/search/?q=<SEARCH_TERM_HERE>

284 Chapter 12

print('Searching...') # display text while downloading the search result page
res = requests.get('https://google.com/search?q=' 'https://pypi.org/search/?q='
+ ' '.join(sys.argv[1:]))
res.raise_for_status()

TODO: Retrieve top search result links.

TODO: Open a browser tab for each result.

The user will specify the search terms using command line arguments
when they launch the program. These arguments will be stored as strings in
a list in sys.argv.

Step 2: Find All the Results
Now you need to use Beautiful Soup to extract the top search result links
from your downloaded HTML. But how do you figure out the right selec-
tor for the job? For example, you can’t just search for all <a> tags, because
there are lots of links you don’t care about in the HTML. Instead, you must
inspect the search result page with the browser’s developer tools to try to
find a selector that will pick out only the links you want.

After doing a search for Beautiful Soup, you can open the browser’s
developer tools and inspect some of the link elements on the page. They
can look complicated, something like pages of this: <a class="package​
-snippet" href="HYPERLINK "view-source:https://pypi.org/project/xml-parser​

/"/project/xml-parser/">.
It doesn’t matter that the element looks incredibly complicated. You just

need to find the pattern that all the search result links have.
Make your code look like the following:

#! python3
searchpypi.py - Opens several google results.
import requests, sys, webbrowser, bs4
--snip--
Retrieve top search result links.
soup = bs4.BeautifulSoup(res.text, 'html.parser')
Open a browser tab for each result.
linkElems = soup.select('.package-snippet')

If you look at the <a> elements, though, the search result links all have
class="package-snippet". Looking through the rest of the HTML source, it
looks like the package-snippet class is used only for search result links. You
don’t have to know what the CSS class package-snippet is or what it does.
You’re just going to use it as a marker for the <a> element you are look-
ing for. You can create a BeautifulSoup object from the downloaded page’s
HTML text and then use the selector '.package-snippet' to find all <a> ele-
ments that are within an element that has the package-snippet CSS class.
Note that if the PyPI website changes its layout, you may need to update this
program with a new CSS selector string to pass to soup.select(). The rest of
the program will still be up to date.

Web Scraping 285

Step 3: Open Web Browsers for Each Result
Finally, we’ll tell the program to open web browser tabs for our results. Add
the following to the end of your program:

#! python3
searchpypi.py - Opens several search results.
import requests, sys, webbrowser, bs4
--snip--
Open a browser tab for each result.
linkElems = soup.select('.package-snippet')
numOpen = min(5, len(linkElems))
for i in range(numOpen):
 urlToOpen = 'https://pypi.org' + linkElems[i].get('href')
 print('Opening', urlToOpen)
 webbrowser.open(urlToOpen)

By default, you open the first five search results in new tabs using the
webbrowser module. However, the user may have searched for something that
turned up fewer than five results. The soup.select() call returns a list of all the
elements that matched your '.package-snippet' selector, so the number of tabs
you want to open is either 5 or the length of this list (whichever is smaller).

The built-in Python function min() returns the smallest of the integer
or float arguments it is passed. (There is also a built-in max() function that
returns the largest argument it is passed.) You can use min() to find out
whether there are fewer than five links in the list and store the number of
links to open in a variable named numOpen. Then you can run through a for
loop by calling range(numOpen).

On each iteration of the loop, you use webbrowser.open() to open a new
tab in the web browser. Note that the href attribute’s value in the returned
<a> elements do not have the initial https://pypi.org part, so you have to con-
catenate that to the href attribute’s string value.

Now you can instantly open the first five PyPI search results for, say,
boring stuff by running searchpypi boring stuff on the command line! (See
Appendix B for how to easily run programs on your operating system.)

Ideas for Similar Programs
The benefit of tabbed browsing is that you can easily open links in new tabs
to peruse later. A program that automatically opens several links at once
can be a nice shortcut to do the following:

•	 Open all the product pages after searching a shopping site such
as Amazon.

•	 Open all the links to reviews for a single product.

•	 Open the result links to photos after performing a search on a photo
site such as Flickr or Imgur.

286 Chapter 12

Project: Downloading All XKCD Comics
Blogs and other regularly updating websites usually have a front page with
the most recent post as well as a Previous button on the page that takes you
to the previous post. Then that post will also have a Previous button, and so
on, creating a trail from the most recent page to the first post on the site.
If you wanted a copy of the site’s content to read when you’re not online,
you could manually navigate over every page and save each one. But this is
pretty boring work, so let’s write a program to do it instead.

XKCD is a popular geek webcomic with a website that fits this structure
(see Figure 12-6). The front page at https://xkcd.com/ has a Prev button that
guides the user back through prior comics. Downloading each comic by
hand would take forever, but you can write a script to do this in a couple
of minutes.

Figure 12-6: XKCD, “a webcomic of romance, sarcasm, math, and language”

Here’s what your program does:

1.	 Loads the XKCD home page

2.	 Saves the comic image on that page

3.	 Follows the Previous Comic link

4.	 Repeats until it reaches the first comic

This means your code will need to do the following:

1.	 Download pages with the requests module.

2.	 Find the URL of the comic image for a page using Beautiful Soup.

Web Scraping 287

3.	 Download and save the comic image to the hard drive with
iter_content().

4.	 Find the URL of the Previous Comic link, and repeat.

Open a new file editor tab and save it as downloadXkcd.py.

Step 1: Design the Program
If you open the browser’s developer tools and inspect the elements on the
page, you’ll find the following:

•	 The URL of the comic’s image file is given by the href attribute of an
 element.

•	 The element is inside a <div id="comic"> element.

•	 The Prev button has a rel HTML attribute with the value prev.

•	 The first comic’s Prev button links to the https://xkcd.com/# URL,
indicating that there are no more previous pages.

Make your code look like the following:

#! python3
downloadXkcd.py - Downloads every single XKCD comic.

import requests, os, bs4

url = 'https://xkcd.com' # starting url
os.makedirs('xkcd', exist_ok=True) # store comics in ./xkcd
while not url.endswith('#'):
 # TODO: Download the page.

 # TODO: Find the URL of the comic image.

 # TODO: Download the image.

 # TODO: Save the image to ./xkcd.

 # TODO: Get the Prev button's url.

print('Done.')

You’ll have a url variable that starts with the value 'https://xkcd.com'
and repeatedly update it (in a for loop) with the URL of the current page’s
Prev link. At every step in the loop, you’ll download the comic at url. You’ll
know to end the loop when url ends with '#'.

You will download the image files to a folder in the current work-
ing directory named xkcd. The call os.makedirs() ensures that this folder
exists, and the exist_ok=True keyword argument prevents the function from

288 Chapter 12

throwing an exception if this folder already exists. The remaining code is
just comments that outline the rest of your program.

Step 2: Download the Web Page
Let’s implement the code for downloading the page. Make your code look
like the following:

#! python3
downloadXkcd.py - Downloads every single XKCD comic.

import requests, os, bs4

url = 'https://xkcd.com' # starting url
os.makedirs('xkcd', exist_ok=True) # store comics in ./xkcd
while not url.endswith('#'):
 # Download the page.
 print('Downloading page %s...' % url)
 res = requests.get(url)
 res.raise_for_status()

 soup = bs4.BeautifulSoup(res.text, 'html.parser')

 # TODO: Find the URL of the comic image.

 # TODO: Download the image.

 # TODO: Save the image to ./xkcd.

 # TODO: Get the Prev button's url.

print('Done.')

First, print url so that the user knows which URL the program is about to
download; then use the requests module’s request.get() function to download
it. As always, you immediately call the Response object’s raise_for_status()
method to throw an exception and end the program if something went
wrong with the download. Otherwise, you create a BeautifulSoup object
from the text of the downloaded page.

Step 3: Find and Download the Comic Image
Make your code look like the following:

#! python3
downloadXkcd.py - Downloads every single XKCD comic.

import requests, os, bs4

--snip--

 # Find the URL of the comic image.
 comicElem = soup.select('#comic img')

Web Scraping 289

 if comicElem == []:
 print('Could not find comic image.')
 else:
 comicUrl = 'https:' + comicElem[0].get('src')
 # Download the image.
 print('Downloading image %s...' % (comicUrl))
 res = requests.get(comicUrl)
 res.raise_for_status()

 # TODO: Save the image to ./xkcd.

 # TODO: Get the Prev button's url.

print('Done.')

From inspecting the XKCD home page with your developer tools, you
know that the element for the comic image is inside a <div> element
with the id attribute set to comic, so the selector '#comic img' will get you the
correct element from the BeautifulSoup object.

A few XKCD pages have special content that isn’t a simple image file.
That’s fine; you’ll just skip those. If your selector doesn’t find any elements,
then soup.select('#comic img') will return a blank list. When that happens,
the program can just print an error message and move on without down-
loading the image.

Otherwise, the selector will return a list containing one element.
You can get the src attribute from this element and pass it to requests​
.get() to download the comic’s image file.

Step 4: Save the Image and Find the Previous Comic
Make your code look like the following:

#! python3
downloadXkcd.py - Downloads every single XKCD comic.

import requests, os, bs4

--snip--

 # Save the image to ./xkcd.
 imageFile = open(os.path.join('xkcd', os.path.basename(comicUrl)),
'wb')
 for chunk in res.iter_content(100000):
 imageFile.write(chunk)
 imageFile.close()

 # Get the Prev button's url.
 prevLink = soup.select('a[rel="prev"]')[0]
 url = 'https://xkcd.com' + prevLink.get('href')

print('Done.')

290 Chapter 12

At this point, the image file of the comic is stored in the res variable.
You need to write this image data to a file on the hard drive.

You’ll need a filename for the local image file to pass to open(). The
comicUrl will have a value like 'https://imgs.xkcd.com/comics/heartbleed
_explanation.png'—which you might have noticed looks a lot like a file
path. And in fact, you can call os.path.basename() with comicUrl, and it will
return just the last part of the URL, 'heartbleed_explanation.png'. You can
use this as the filename when saving the image to your hard drive. You join
this name with the name of your xkcd folder using os.path.join() so that
your program uses backslashes (\) on Windows and forward slashes (/) on
macOS and Linux. Now that you finally have the filename, you can call
open() to open a new file in 'wb' “write binary” mode.

Remember from earlier in this chapter that to save files you’ve down-
loaded using requests, you need to loop over the return value of the iter​
_content() method. The code in the for loop writes out chunks of the image
data (at most 100,000 bytes each) to the file and then you close the file. The
image is now saved to your hard drive.

Afterward, the selector 'a[rel="prev"]' identifies the <a> element with
the rel attribute set to prev, and you can use this <a> element’s href attribute
to get the previous comic’s URL, which gets stored in url. Then the while
loop begins the entire download process again for this comic.

The output of this program will look like this:

Downloading page https://xkcd.com...
Downloading image https://imgs.xkcd.com/comics/phone_alarm.png...
Downloading page https://xkcd.com/1358/...
Downloading image https://imgs.xkcd.com/comics/nro.png...
Downloading page https://xkcd.com/1357/...
Downloading image https://imgs.xkcd.com/comics/free_speech.png...
Downloading page https://xkcd.com/1356/...
Downloading image https://imgs.xkcd.com/comics/orbital_mechanics.png...
Downloading page https://xkcd.com/1355/...
Downloading image https://imgs.xkcd.com/comics/airplane_message.png...
Downloading page https://xkcd.com/1354/...
Downloading image https://imgs.xkcd.com/comics/heartbleed_explanation.png...
--snip--

This project is a good example of a program that can automatically
follow links in order to scrape large amounts of data from the web. You
can learn about Beautiful Soup’s other features from its documentation
at https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

Ideas for Similar Programs
Downloading pages and following links are the basis of many web crawling
programs. Similar programs could also do the following:

•	 Back up an entire site by following all of its links.

•	 Copy all the messages off a web forum.

•	 Duplicate the catalog of items for sale on an online store.

https://imgs.xkcd.com/comics/heartbleed_explanation.png
https://imgs.xkcd.com/comics/heartbleed_explanation.png

Web Scraping 291

The requests and bs4 modules are great as long as you can figure out
the URL you need to pass to requests.get(). However, sometimes this isn’t
so easy to find. Or perhaps the website you want your program to navigate
requires you to log in first. The selenium module will give your programs the
power to perform such sophisticated tasks.

Controlling the Browser with the selenium Module
The selenium module lets Python directly control the browser by program-
matically clicking links and filling in login information, almost as though
there were a human user interacting with the page. Using selenium, you can
interact with web pages in a much more advanced way than with requests
and bs4; but because it launches a web browser, it is a bit slower and hard to
run in the background if, say, you just need to download some files from
the web.

Still, if you need to interact with a web page in a way that, say, depends
on the JavaScript code that updates the page, you’ll need to use selenium
instead of requests. That’s because major ecommerce websites such as
Amazon almost certainly have software systems to recognize traffic that
they suspect is a script harvesting their info or signing up for multiple free
accounts. These sites may refuse to serve pages to you after a while, break-
ing any scripts you’ve made. The selenium module is much more likely to
function on these sites long-term than requests.

A major “tell” to websites that you’re using a script is the user-agent
string, which identifies the web browser and is included in all HTTP
requests. For example, the user-agent string for the requests module is
something like 'python-requests/2.21.0'. You can visit a site such as https://
www.whatsmyua.info/ to see your user-agent string. Using selenium, you’re
much more likely to “pass for human” because not only is Selenium’s user-
agent is the same as a regular browser (for instance, 'Mozilla/5.0 (Windows NT
10.0; Win64; x64; rv:65.0) Gecko/20100101 Firefox/65.0'), but it has the same
traffic patterns: a selenium-controlled browser will download images, adver-
tisements, cookies, and privacy-invading trackers just like a regular browser.
However, selenium can still be detected by websites, and major ticketing and
ecommerce websites often block browsers controlled by selenium to prevent
web scraping of their pages.

Starting a selenium-Controlled Browser
The following examples will show you how to control Firefox’s web browser.
If you don’t already have Firefox, you can download it for free from https://
getfirefox.com/. You can install selenium by running pip install --user selenium
from a command line terminal. More information is available in Appendix A.

Importing the modules for selenium is slightly tricky. Instead of import
selenium, you need to run from selenium import webdriver. (The exact reason
why the selenium module is set up this way is beyond the scope of this book.)

292 Chapter 12

After that, you can launch the Firefox browser with selenium. Enter the
following into the interactive shell:

>>> from selenium import webdriver
>>> browser = webdriver.Firefox()
>>> type(browser)
<class 'selenium.webdriver.firefox.webdriver.WebDriver'>
>>> browser.get('https://inventwithpython.com')

You’ll notice when webdriver.Firefox() is called, the Firefox web browser
starts up. Calling type() on the value webdriver.Firefox() reveals it’s of the
WebDriver data type. And calling browser.get('https://inventwithpython.com')
directs the browser to https://inventwithpython.com/. Your browser should
look something like Figure 12-7.

Figure 12-7: After we call webdriver.Firefox() and get() in Mu, the Firefox
browser appears.

If you encounter the error message “'geckodriver' executable needs to
be in PATH.”, then you need to manually download the webdriver for Firefox
before you can use selenium to control it. You can also control browsers
other than Firefox if you install the webdriver for them.

For Firefox, go to https://github.com/mozilla/geckodriver/releases and down-
load the geckodriver for your operating system. (“Gecko” is the name of the
browser engine used in Firefox.) For example, on Windows you’ll want to
download the geckodriver-v0.24.0-win64.zip link, and on macOS, you’ll want
the geckodriver-v0.24.0-macos.tar.gz link. Newer versions will have slightly
different links. The downloaded ZIP file will contain a geckodriver.exe (on
Windows) or geckodriver (on macOS and Linux) file that you can put on
your system PATH. Appendix B has information about the system PATH, or you
can learn more at https://stackoverflow.com/q/40208051/1893164.

https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases/download/v0.24.0/geckodriver-v0.24.0-win64.zip

Web Scraping 293

For Chrome, go to https://sites.google.com/a/chromium.org/chromedriver/
downloads and download the ZIP file for your operating system. This ZIP file
will contain a chromedriver.exe (on Windows) or chromedriver (on macOS or
Linux) file that you can put on your system PATH.

Other major web browsers also have webdrivers available, and you
can often find these by performing an internet search for “<browser
name> webdriver”.

If you still have problems opening up a new browser under the control
of selenium, it may be because the current version of the browser is incom-
patible with the selenium module. One workaround is to install an older ver-
sion of the web browser—or, more simply, an older version of the selenium
module. You can find the list of selenium version numbers at https://pypi.org​
/project/selenium/#history. Unfortunately, the compatibility between versions
of selenium and a browser sometimes breaks, and you may need to search
the web for possible solutions. Appendix A has more information about
running pip to install a specific version of selenium. (For example, you might
run pip install --user -U selenium==3.14.1.)

Finding Elements on the Page
WebDriver objects have quite a few methods for finding elements on a page.
They are divided into the find_element_* and find_elements_* methods. The
find_element_* methods return a single WebElement object, representing the first
element on the page that matches your query. The find_elements_* methods
return a list of WebElement_* objects for every matching element on the page.

Table 12-3 shows several examples of find_element_* and find_elements_*
methods being called on a WebDriver object that’s stored in the variable browser.

Table 12-3: Selenium’s WebDriver Methods for Finding Elements

Method name WebElement object/list returned

browser.find_element_by_class_name(name)
browser.find_elements_by_class_name(name)

Elements that use the CSS
class name

browser.find_element_by_css_selector(selector)
browser.find_elements_by_css_selector(selector)

Elements that match the CSS
selector

browser.find_element_by_id(id)
browser.find_elements_by_id(id)

Elements with a matching id
attribute value

browser.find_element_by_link_text(text)
browser.find_elements_by_link_text(text)

<a> elements that completely
match the text provided

browser.find_element_by_partial_link_text(text)
browser.find_elements_by_partial_link_text(text)

<a> elements that contain the
text provided

browser.find_element_by_name(name)
browser.find_elements_by_name(name)

Elements with a matching name
attribute value

browser.find_element_by_tag_name(name)
browser.find_elements_by_tag_name(name)

Elements with a matching tag name
(case-insensitive; an <a> element is
matched by 'a' and 'A')

https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://pypi.org/project/selenium/#history
https://pypi.org/project/selenium/#history

294 Chapter 12

Except for the *_by_tag_name() methods, the arguments to all the meth-
ods are case sensitive. If no elements exist on the page that match what the
method is looking for, the selenium module raises a NoSuchElement exception.
If you do not want this exception to crash your program, add try and except
statements to your code.

Once you have the WebElement object, you can find out more about it by
reading the attributes or calling the methods in Table 12-4.

Table 12-4: WebElement Attributes and Methods

Attribute or method Description

tag_name The tag name, such as 'a' for an <a> element
get_attribute(name) The value for the element’s name attribute
text The text within the element, such as 'hello' in hello

clear() For text field or text area elements, clears the text typed into it
is_displayed() Returns True if the element is visible; otherwise returns False
is_enabled() For input elements, returns True if the element is enabled;

otherwise returns False
is_selected() For checkbox or radio button elements, returns True if the

element is selected; otherwise returns False
location A dictionary with keys 'x' and 'y' for the position of the

element in the page

For example, open a new file editor tab and enter the following program:

from selenium import webdriver
browser = webdriver.Firefox()
browser.get('https://inventwithpython.com')
try:
 elem = browser.find_element_by_class_name(' cover-thumb')
 print('Found <%s> element with that class name!' % (elem.tag_name))
except:
 print('Was not able to find an element with that name.')

Here we open Firefox and direct it to a URL. On this page, we try to
find elements with the class name 'bookcover', and if such an element is
found, we print its tag name using the tag_name attribute. If no such element
was found, we print a different message.

This program will output the following:

Found element with that class name!

We found an element with the class name 'bookcover' and the tag
name 'img'.

Web Scraping 295

Clicking the Page
WebElement objects returned from the find_element_* and find_elements_*
methods have a click() method that simulates a mouse click on that
element. This method can be used to follow a link, make a selection on a
radio button, click a Submit button, or trigger whatever else might happen
when the element is clicked by the mouse. For example, enter the following
into the interactive shell:

>>> from selenium import webdriver
>>> browser = webdriver.Firefox()
>>> browser.get('https://inventwithpython.com')
>>> linkElem = browser.find_element_by_link_text('Read Online for Free')
>>> type(linkElem)
<class 'selenium.webdriver.remote.webelement.FirefoxWebElement'>
>>> linkElem.click() # follows the "Read Online for Free" link

This opens Firefox to https://inventwithpython.com/, gets the WebElement
object for the <a> element with the text Read It Online, and then simulates
clicking that <a> element. It’s just like if you clicked the link yourself; the
browser then follows that link.

Filling Out and Submitting Forms
Sending keystrokes to text fields on a web page is a matter of finding the
<input> or <textarea> element for that text field and then calling the send
_keys()method. For example, enter the following into the interactive shell:

>>> from selenium import webdriver
>>> browser = webdriver.Firefox()
>>> browser.get('https://login.metafilter.com')
>>> userElem = browser.find_element_by_id('user_name)
>>> userElem.send_keys('your_real_username_here')

>>> passwordElem = browser.find_element_by_id('user_pass')
>>> passwordElem.send_keys('your_real_password_here')
>>> passwordElem.submit()

As long as login page for MetaFilter hasn’t changed the id of the Username
and Password text fields since this book was published, the previous code
will fill in those text fields with the provided text. (You can always use the
browser’s inspector to verify the id.) Calling the submit() method on any ele-
ment will have the same result as clicking the Submit button for the form
that element is in. (You could have just as easily called emailElem.submit(),
and the code would have done the same thing.)

W A R N I N G 	 Avoid putting your passwords in source code whenever possible. It’s easy to acciden-
tally leak your passwords to others when they are left unencrypted on your hard drive.
If possible, have your program prompt users to enter their passwords from the key-
board using the pyinputplus.inputPassword() function described in Chapter 8.

296 Chapter 12

Sending Special Keys
The selenium module has a module for keyboard keys that are impossible to
type into a string value, which function much like escape characters. These
values are stored in attributes in the selenium.webdriver.common.keys module.
Since that is such a long module name, it’s much easier to run from selenium​
.webdriver.common.keys import Keys at the top of your program; if you do, then
you can simply write Keys anywhere you’d normally have to write selenium​
.webdriver.common.keys. Table 12-5 lists the commonly used Keys variables.

Table 12-5: Commonly Used Variables in the selenium.webdriver.common.keys
Module

Attributes Meanings

Keys.DOWN, Keys.UP, Keys.LEFT,
Keys.RIGHT

The keyboard arrow keys

Keys.ENTER, Keys.RETURN The enter and return keys

Keys.HOME, Keys.END, Keys.PAGE_DOWN,
Keys.PAGE_UP

The home, end, pagedown, and pageup keys

Keys.ESCAPE, Keys.BACK_SPACE,
Keys.DELETE

The esc, backspace, and delete keys

Keys.F1, Keys.F2, . . . , Keys.F12 The F1 to F12 keys at the top of the keyboard
Keys.TAB The tab key

For example, if the cursor is not currently in a text field, pressing the
home and end keys will scroll the browser to the top and bottom of the
page, respectively. Enter the following into the interactive shell, and notice
how the send_keys() calls scroll the page:

>>> from selenium import webdriver
>>> from selenium.webdriver.common.keys import Keys
>>> browser = webdriver.Firefox()
>>> browser.get('https://nostarch.com')
>>> htmlElem = browser.find_element_by_tag_name('html')
>>> htmlElem.send_keys(Keys.END) # scrolls to bottom
>>> htmlElem.send_keys(Keys.HOME) # scrolls to top

The <html> tag is the base tag in HTML files: the full content of the
HTML file is enclosed within the <html> and </html> tags. Calling browser​
.find_element_by_tag_name('html') is a good place to send keys to the general
web page. This would be useful if, for example, new content is loaded once
you’ve scrolled to the bottom of the page.

Web Scraping 297

Clicking Browser Buttons
The selenium module can simulate clicks on various browser buttons as well
through the following methods:

browser.back()  Clicks the Back button.

browser.forward()  Clicks the Forward button.

browser.refresh()  Clicks the Refresh/Reload button.

browser.quit()  Clicks the Close Window button.

More Information on Selenium
Selenium can do much more beyond the functions described here. It can
modify your browser’s cookies, take screenshots of web pages, and run
custom JavaScript. To learn more about these features, you can visit the
selenium documentation at https://selenium-python.readthedocs.org/.

Summary
Most boring tasks aren’t limited to the files on your computer. Being able
to programmatically download web pages will extend your programs to
the internet. The requests module makes downloading straightforward,
and with some basic knowledge of HTML concepts and selectors, you can
utilize the BeautifulSoup module to parse the pages you download.

But to fully automate any web-based tasks, you need direct control of
your web browser through the selenium module. The selenium module will
allow you to log in to websites and fill out forms automatically. Since a web
browser is the most common way to send and receive information over the
internet, this is a great ability to have in your programmer toolkit.

Practice Questions

1.	 Briefly describe the differences between the webbrowser, requests, bs4,
and selenium modules.

2.	 What type of object is returned by requests.get()? How can you access
the downloaded content as a string value?

3.	 What requests method checks that the download worked?

4.	 How can you get the HTTP status code of a requests response?

5.	 How do you save a requests response to a file?

6.	 What is the keyboard shortcut for opening a browser’s developer tools?

7.	 How can you view (in the developer tools) the HTML of a specific ele-
ment on a web page?

8.	 What is the CSS selector string that would find the element with an id
attribute of main?

298 Chapter 12

9.	 What is the CSS selector string that would find the elements with a CSS
class of highlight?

10.	 What is the CSS selector string that would find all the <div> elements
inside another <div> element?

11.	 What is the CSS selector string that would find the <button> element
with a value attribute set to favorite?

12.	 Say you have a Beautiful Soup Tag object stored in the variable spam for
the element <div>Hello, world!</div>. How could you get a string 'Hello,
world!' from the Tag object?

13.	 How would you store all the attributes of a Beautiful Soup Tag object in
a variable named linkElem?

14.	 Running import selenium doesn’t work. How do you properly import the
selenium module?

15.	 What’s the difference between the find_element_* and find_elements_*
methods?

16.	 What methods do Selenium’s WebElement objects have for simulating
mouse clicks and keyboard keys?

17.	 You could call send_keys(Keys.ENTER) on the Submit button’s WebElement
object, but what is an easier way to submit a form with selenium?

18.	 How can you simulate clicking a browser’s Forward, Back, and Refresh
buttons with selenium?

Practice Projects
For practice, write programs to do the following tasks.

Command Line Emailer
Write a program that takes an email address and string of text on the
command line and then, using selenium, logs in to your email account
and sends an email of the string to the provided address. (You might
want to set up a separate email account for this program.)

This would be a nice way to add a notification feature to your pro-
grams. You could also write a similar program to send messages from
a Facebook or Twitter account.

Image Site Downloader
Write a program that goes to a photo-sharing site like Flickr or Imgur,
searches for a category of photos, and then downloads all the resulting
images. You could write a program that works with any photo site that
has a search feature.

Web Scraping 299

2048
2048 is a simple game where you combine tiles by sliding them up, down,
left, or right with the arrow keys. You can actually get a fairly high score
by repeatedly sliding in an up, right, down, and left pattern over and over
again. Write a program that will open the game at https://gabrielecirulli​
.github.io/2048/ and keep sending up, right, down, and left keystrokes to
automatically play the game.

Link Verification
Write a program that, given the URL of a web page, will attempt to down-
load every linked page on the page. The program should flag any pages
that have a 404 “Not Found” status code and print them out as broken links.

https://gabrielecirulli.github.io/2048/
https://gabrielecirulli.github.io/2048/

13
W O R K I N G W I T H E X C E L

S P R E A D S H E E T S

Although we don’t often think of spread-
sheets as programming tools, almost

everyone uses them to organize informa-
tion into two-dimensional data structures, per-

form calculations with formulas, and produce output
as charts. In the next two chapters, we’ll integrate
Python into two popular spreadsheet applications:
Microsoft Excel and Google Sheets.

Excel is a popular and powerful spreadsheet application for Windows.
The openpyxl module allows your Python programs to read and modify
Excel spreadsheet files. For example, you might have the boring task of
copying certain data from one spreadsheet and pasting it into another one.
Or you might have to go through thousands of rows and pick out just a
handful of them to make small edits based on some criteria. Or you might
have to look through hundreds of spreadsheets of department budgets,
searching for any that are in the red. These are exactly the sort of boring,
mindless spreadsheet tasks that Python can do for you.

302 Chapter 13

Although Excel is proprietary software from Microsoft, there
are free alternatives that run on Windows, macOS, and Linux. Both
LibreOffice Calc and OpenOffice Calc work with Excel’s .xlsx file format
for spreadsheets, which means the openpyxl module can work on spread-
sheets from these applications as well. You can download the software from
https://www.libreoffice.org/ and https://www.openoffice.org/, respectively. Even
if you already have Excel installed on your computer, you may find these
programs easier to use. The screenshots in this chapter, however, are all
from Excel 2010 on Windows 10.

Excel Documents
First, let’s go over some basic definitions: an Excel spreadsheet document
is called a workbook. A single workbook is saved in a file with the .xlsx exten-
sion. Each workbook can contain multiple sheets (also called worksheets). The
sheet the user is currently viewing (or last viewed before closing Excel) is
called the active sheet.

Each sheet has columns (addressed by letters starting at A) and rows
(addressed by numbers starting at 1). A box at a particular column and row
is called a cell. Each cell can contain a number or text value. The grid of
cells with data makes up a sheet.

Installing the openpyxl Module
Python does not come with OpenPyXL, so you’ll have to install it. Follow
the instructions for installing third-party modules in Appendix A; the name
of the module is openpyxl.

This book uses version 2.6.2 of OpenPyXL. It’s important that you install
this version by running pip install --user -U openpyxl==2.6.2 because newer
versions of OpenPyXL are incompatible with the information in this book.
To test whether it is installed correctly, enter the following into the interactive
shell:

>>> import openpyxl

If the module was correctly installed, this should produce no error mes-
sages. Remember to import the openpyxl module before running the interac-
tive shell examples in this chapter, or you’ll get a NameError: name 'openpyxl'
is not defined error.

You can find the full documentation for OpenPyXL at https://openpyxl​
.readthedocs.org/.

Reading Excel Documents
The examples in this chapter will use a spreadsheet named example.xlsx
stored in the root folder. You can either create the spreadsheet yourself or
download it from https://nostarch.com/automatestuff2/. Figure 13-1 shows the

https://www.libreoffice.org/
https://www.libreoffice.org/
https://www.libreoffice.org/
https://openpyxl.readthedocs.org/
https://openpyxl.readthedocs.org/

Working with Excel Spreadsheets 303

tabs for the three default sheets named Sheet1, Sheet2, and Sheet3 that Excel
automatically provides for new workbooks. (The number of default sheets
created may vary between operating systems and spreadsheet programs.)

Figure 13-1: The tabs for a workbook’s sheets are
in the lower-left corner of Excel.

Sheet 1 in the example file should look like Table 13-1. (If you didn’t
download example.xlsx from the website, you should enter this data into the
sheet yourself.)

Table 13-1: The example.xlsx Spreadsheet

A B C

1 4/5/2015 1:34:02 PM Apples 73

2 4/5/2015 3:41:23 AM Cherries 85

3 4/6/2015 12:46:51 PM Pears 14

4 4/8/2015 8:59:43 AM Oranges 52

5 4/10/2015 2:07:00 AM Apples 152

6 4/10/2015 6:10:37 PM Bananas 23

7 4/10/2015 2:40:46 AM Strawberries 98

Now that we have our example spreadsheet, let’s see how we can manip-
ulate it with the openpyxl module.

Opening Excel Documents with OpenPyXL
Once you’ve imported the openpyxl module, you’ll be able to use the openpyxl
.load_workbook() function. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example.xlsx')
>>> type(wb)
<class 'openpyxl.workbook.workbook.Workbook'>

The openpyxl.load_workbook() function takes in the filename and returns
a value of the workbook data type. This Workbook object represents the Excel
file, a bit like how a File object represents an opened text file.

Remember that example.xlsx needs to be in the current working direc-
tory in order for you to work with it. You can find out what the current
working directory is by importing os and using os.getcwd(), and you can
change the current working directory using os.chdir().

304 Chapter 13

Getting Sheets from the Workbook
You can get a list of all the sheet names in the workbook by accessing the
sheetnames attribute. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example.xlsx')
>>> wb.sheetnames # The workbook's sheets' names.
['Sheet1', 'Sheet2', 'Sheet3']
>>> sheet = wb['Sheet3'] # Get a sheet from the workbook.
>>> sheet
<Worksheet "Sheet3">
>>> type(sheet)
<class 'openpyxl.worksheet.worksheet.Worksheet'>
>>> sheet.title # Get the sheet's title as a string.
'Sheet3'
>>> anotherSheet = wb.active # Get the active sheet.
>>> anotherSheet
<Worksheet "Sheet1">

Each sheet is represented by a Worksheet object, which you can obtain
by using the square brackets with the sheet name string like a dictionary
key. Finally, you can use the active attribute of a Workbook object to get the
workbook’s active sheet. The active sheet is the sheet that’s on top when
the workbook is opened in Excel. Once you have the Worksheet object, you
can get its name from the title attribute.

Getting Cells from the Sheets
Once you have a Worksheet object, you can access a Cell object by its name.
Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example.xlsx')
>>> sheet = wb['Sheet1'] # Get a sheet from the workbook.
>>> sheet['A1'] # Get a cell from the sheet.
<Cell 'Sheet1'.A1>
>>> sheet['A1'].value # Get the value from the cell.
datetime.datetime(2015, 4, 5, 13, 34, 2)
>>> c = sheet['B1'] # Get another cell from the sheet.
>>> c.value
'Apples'
>>> # Get the row, column, and value from the cell.
>>> 'Row %s, Column %s is %s' % (c.row, c.column, c.value)
'Row 1, Column B is Apples'
>>> 'Cell %s is %s' % (c.coordinate, c.value)
'Cell B1 is Apples'
>>> sheet['C1'].value
73

The Cell object has a value attribute that contains, unsurprisingly, the
value stored in that cell. Cell objects also have row, column, and coordinate
attributes that provide location information for the cell.

Working with Excel Spreadsheets 305

Here, accessing the value attribute of our Cell object for cell B1 gives us
the string 'Apples'. The row attribute gives us the integer 1, the column attri-
bute gives us 'B', and the coordinate attribute gives us 'B1'.

OpenPyXL will automatically interpret the dates in column A and
return them as datetime values rather than strings. The datetime data type
is explained further in Chapter 17.

Specifying a column by letter can be tricky to program, especially
because after column Z, the columns start by using two letters: AA, AB,
AC, and so on. As an alternative, you can also get a cell using the sheet’s
cell() method and passing integers for its row and column keyword argu-
ments. The first row or column integer is 1, not 0. Continue the interactive
shell example by entering the following:

>>> sheet.cell(row=1, column=2)
<Cell 'Sheet1'.B1>
>>> sheet.cell(row=1, column=2).value
'Apples'
>>> for i in range(1, 8, 2): # Go through every other row:
... print(i, sheet.cell(row=i, column=2).value)
...
1 Apples
3 Pears
5 Apples
7 Strawberries

As you can see, using the sheet’s cell() method and passing it row=1 and
column=2 gets you a Cell object for cell B1, just like specifying sheet['B1'] did.
Then, using the cell() method and its keyword arguments, you can write a
for loop to print the values of a series of cells.

Say you want to go down column B and print the value in every cell with
an odd row number. By passing 2 for the range() function’s “step” parameter,
you can get cells from every second row (in this case, all the odd-numbered
rows). The for loop’s i variable is passed for the row keyword argument to
the cell() method, while 2 is always passed for the column keyword argu-
ment. Note that the integer 2, not the string 'B', is passed.

You can determine the size of the sheet with the Worksheet object’s max_row
and max_column attributes. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example.xlsx')
>>> sheet = wb['Sheet1']
>>> sheet.max_row # Get the highest row number.
7
>>> sheet.max_column # Get the highest column number.
3

Note that the max_column attribute is an integer rather than the letter
that appears in Excel.

306 Chapter 13

Converting Between Column Letters and Numbers
To convert from letters to numbers, call the openpyxl.utils.column_index_from​
_string() function. To convert from numbers to letters, call the openpyxl.utils​
.get_column_letter() function. Enter the following into the interactive shell:

>>> import openpyxl
>>> from openpyxl.utils import get_column_letter, column_index_from_string
>>> get_column_letter(1) # Translate column 1 to a letter.
'A'
>>> get_column_letter(2)
'B'
>>> get_column_letter(27)
'AA'
>>> get_column_letter(900)
'AHP'
>>> wb = openpyxl.load_workbook('example.xlsx')
>>> sheet = wb['Sheet1']
>>> get_column_letter(sheet.max_column)
'C'
>>> column_index_from_string('A') # Get A's number.
1
>>> column_index_from_string('AA')
27

After you import these two functions from the openpyxl.utils module, you
can call get_column_letter() and pass it an integer like 27 to figure out what
the letter name of the 27th column is. The function column_index_string()
does the reverse: you pass it the letter name of a column, and it tells you
what number that column is. You don’t need to have a workbook loaded to
use these functions. If you want, you can load a workbook, get a Worksheet
object, and use a Worksheet attribute like max_column to get an integer. Then,
you can pass that integer to get_column_letter().

Getting Rows and Columns from the Sheets
You can slice Worksheet objects to get all the Cell objects in a row, column, or
rectangular area of the spreadsheet. Then you can loop over all the cells in
the slice. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example.xlsx')
>>> sheet = wb['Sheet1']
>>> tuple(sheet['A1':'C3']) # Get all cells from A1 to C3.
((<Cell 'Sheet1'.A1>, <Cell 'Sheet1'.B1>, <Cell 'Sheet1'.C1>), (<Cell
'Sheet1'.A2>, <Cell 'Sheet1'.B2>, <Cell 'Sheet1'.C2>), (<Cell 'Sheet1'.A3>,
<Cell 'Sheet1'.B3>, <Cell 'Sheet1'.C3>))

 >>> for rowOfCellObjects in sheet['A1':'C3']:
 ... for cellObj in rowOfCellObjects:

... print(cellObj.coordinate, cellObj.value)

... print('--- END OF ROW ---')

A1 2015-04-05 13:34:02

Working with Excel Spreadsheets 307

B1 Apples
C1 73
--- END OF ROW ---
A2 2015-04-05 03:41:23
B2 Cherries
C2 85
--- END OF ROW ---
A3 2015-04-06 12:46:51
B3 Pears
C3 14
--- END OF ROW ---

Here, we specify that we want the Cell objects in the rectangular area
from A1 to C3, and we get a Generator object containing the Cell objects in
that area. To help us visualize this Generator object, we can use tuple() on it
to display its Cell objects in a tuple.

This tuple contains three tuples: one for each row, from the top of the
desired area to the bottom. Each of these three inner tuples contains the Cell
objects in one row of our desired area, from the leftmost cell to the right. So
overall, our slice of the sheet contains all the Cell objects in the area from A1
to C3, starting from the top-left cell and ending with the bottom-right cell.

To print the values of each cell in the area, we use two for loops. The
outer for loop goes over each row in the slice . Then, for each row, the
nested for loop goes through each cell in that row .

To access the values of cells in a particular row or column, you can
also use a Worksheet object’s rows and columns attribute. These attributes
must be converted to lists with the list() function before you can use
the square brackets and an index with them. Enter the following into
the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example.xlsx')
>>> sheet = wb.active
>>> list(sheet.columns)[1] # Get second column's cells.
(<Cell 'Sheet1'.B1>, <Cell 'Sheet1'.B2>, <Cell 'Sheet1'.B3>, <Cell 'Sheet1'.
B4>, <Cell 'Sheet1'.B5>, <Cell 'Sheet1'.B6>, <Cell 'Sheet1'.B7>)
>>> for cellObj in list(sheet.columns)[1]:
 print(cellObj.value)

Apples
Cherries
Pears
Oranges
Apples
Bananas
Strawberries

Using the rows attribute on a Worksheet object will give you a tuple of
tuples. Each of these inner tuples represents a row, and contains the Cell
objects in that row. The columns attribute also gives you a tuple of tuples,
with each of the inner tuples containing the Cell objects in a particular

308 Chapter 13

column. For example.xlsx, since there are 7 rows and 3 columns, rows gives
us a tuple of 7 tuples (each containing 3 Cell objects), and columns gives us
a tuple of 3 tuples (each containing 7 Cell objects).

To access one particular tuple, you can refer to it by its index in the
larger tuple. For example, to get the tuple that represents column B, you
use list(sheet.columns)[1]. To get the tuple containing the Cell objects in
column A, you’d use list(sheet.columns)[0]. Once you have a tuple repre-
senting one row or column, you can loop through its Cell objects and print
their values.

Workbooks, Sheets, Cells
As a quick review, here’s a rundown of all the functions, methods, and data
types involved in reading a cell out of a spreadsheet file:

1.	 Import the openpyxl module.

2.	 Call the openpyxl.load_workbook() function.

3.	 Get a Workbook object.

4.	 Use the active or sheetnames attributes.

5.	 Get a Worksheet object.

6.	 Use indexing or the cell() sheet method with row and column keyword
arguments.

7.	 Get a Cell object.

8.	 Read the Cell object’s value attribute.

Project: Reading Data from a Spreadsheet
Say you have a spreadsheet of data from the 2010 US Census and you have
the boring task of going through its thousands of rows to count both the
total population and the number of census tracts for each county. (A census
tract is simply a geographic area defined for the purposes of the census.)
Each row represents a single census tract. We’ll name the spreadsheet
file censuspopdata.xlsx, and you can download it from https://nostarch.com
/automatestuff2/. Its contents look like Figure 13-2.

Figure 13-2: The censuspopdata.xlsx spreadsheet

https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/

Working with Excel Spreadsheets 309

Even though Excel can calculate the sum of multiple selected cells,
you’d still have to select the cells for each of the 3,000-plus counties. Even
if it takes just a few seconds to calculate a county’s population by hand, this
would take hours to do for the whole spreadsheet.

In this project, you’ll write a script that can read from the census spread-
sheet file and calculate statistics for each county in a matter of seconds.

This is what your program does:

1.	 Reads the data from the Excel spreadsheet

2.	 Counts the number of census tracts in each county

3.	 Counts the total population of each county

4.	 Prints the results

This means your code will need to do the following:

1.	 Open and read the cells of an Excel document with the openpyxl module.

2.	 Calculate all the tract and population data and store it in a data structure.

3.	 Write the data structure to a text file with the .py extension using the
pprint module.

Step 1: Read the Spreadsheet Data
There is just one sheet in the censuspopdata.xlsx spreadsheet, named 'Population
by Census Tract', and each row holds the data for a single census tract. The
columns are the tract number (A), the state abbreviation (B), the county
name (C), and the population of the tract (D).

Open a new file editor tab and enter the following code. Save the file as
readCensusExcel.py.

#! python3
readCensusExcel.py - Tabulates population and number of census tracts for
each county.

 import openpyxl, pprint
print('Opening workbook...')

 wb = openpyxl.load_workbook('censuspopdata.xlsx')
 sheet = wb['Population by Census Tract']

countyData = {}

TODO: Fill in countyData with each county's population and tracts.
print('Reading rows...')

 for row in range(2, sheet.max_row + 1):
 # Each row in the spreadsheet has data for one census tract.
 state = sheet['B' + str(row)].value
 county = sheet['C' + str(row)].value
 pop = sheet['D' + str(row)].value

TODO: Open a new text file and write the contents of countyData to it.

310 Chapter 13

This code imports the openpyxl module, as well as the pprint module that
you’ll use to print the final county data . Then it opens the censuspopdata
.xlsx file , gets the sheet with the census data , and begins iterating over
its rows .

Note that you’ve also created a variable named countyData, which will
contain the populations and number of tracts you calculate for each county.
Before you can store anything in it, though, you should determine exactly
how you’ll structure the data inside it.

Step 2: Populate the Data Structure
The data structure stored in countyData will be a dictionary with state abbre-
viations as its keys. Each state abbreviation will map to another dictionary,
whose keys are strings of the county names in that state. Each county name
will in turn map to a dictionary with just two keys, 'tracts' and 'pop'. These
keys map to the number of census tracts and population for the county. For
example, the dictionary will look similar to this:

{'AK': {'Aleutians East': {'pop': 3141, 'tracts': 1},
 'Aleutians West': {'pop': 5561, 'tracts': 2},
 'Anchorage': {'pop': 291826, 'tracts': 55},
 'Bethel': {'pop': 17013, 'tracts': 3},
 'Bristol Bay': {'pop': 997, 'tracts': 1},
 --snip--

If the previous dictionary were stored in countyData, the following
expressions would evaluate like this:

>>> countyData['AK']['Anchorage']['pop']
291826
>>> countyData['AK']['Anchorage']['tracts']
55

More generally, the countyData dictionary’s keys will look like this:

countyData[state abbrev][county]['tracts']
countyData[state abbrev][county]['pop']

Now that you know how countyData will be structured, you can write
the code that will fill it with the county data. Add the following code to the
bottom of your program:

#! python 3
readCensusExcel.py - Tabulates population and number of census tracts for
each county.

--snip--

Working with Excel Spreadsheets 311

for row in range(2, sheet.max_row + 1):
 # Each row in the spreadsheet has data for one census tract.
 state = sheet['B' + str(row)].value
 county = sheet['C' + str(row)].value
 pop = sheet['D' + str(row)].value

 # Make sure the key for this state exists.
  countyData.setdefault(state, {})

 # Make sure the key for this county in this state exists.
  countyData[state].setdefault(county, {'tracts': 0, 'pop': 0})

 # Each row represents one census tract, so increment by one.
  countyData[state][county]['tracts'] += 1

 # Increase the county pop by the pop in this census tract.
  countyData[state][county]['pop'] += int(pop)

TODO: Open a new text file and write the contents of countyData to it.

The last two lines of code perform the actual calculation work, incre-
menting the value for tracts  and increasing the value for pop  for the
current county on each iteration of the for loop.

The other code is there because you cannot add a county dictionary as
the value for a state abbreviation key until the key itself exists in countyData.
(That is, countyData['AK']['Anchorage']['tracts'] += 1 will cause an error if
the 'AK' key doesn’t exist yet.) To make sure the state abbreviation key exists
in your data structure, you need to call the setdefault() method to set a
value if one does not already exist for state .

Just as the countyData dictionary needs a dictionary as the value for each
state abbreviation key, each of those dictionaries will need its own dictionary
as the value for each county key . And each of those dictionaries in turn
will need keys 'tracts' and 'pop' that start with the integer value 0. (If you
ever lose track of the dictionary structure, look back at the example diction-
ary at the start of this section.)

Since setdefault() will do nothing if the key already exists, you can call
it on every iteration of the for loop without a problem.

Step 3: Write the Results to a File
After the for loop has finished, the countyData dictionary will contain all
of the population and tract information keyed by county and state. At this
point, you could program more code to write this to a text file or another
Excel spreadsheet. For now, let’s just use the pprint.pformat() function to
write the countyData dictionary value as a massive string to a file named
census2010.py. Add the following code to the bottom of your program
(making sure to keep it unindented so that it stays outside the for loop):

#! python 3
readCensusExcel.py - Tabulates population and number of census tracts for
each county.

312 Chapter 13

--snip--

for row in range(2, sheet.max_row + 1):
--snip--

Open a new text file and write the contents of countyData to it.
print('Writing results...')
resultFile = open('census2010.py', 'w')
resultFile.write('allData = ' + pprint.pformat(countyData))
resultFile.close()
print('Done.')

The pprint.pformat() function produces a string that itself is formatted as
valid Python code. By outputting it to a text file named census2010.py, you’ve
generated a Python program from your Python program! This may seem
complicated, but the advantage is that you can now import census2010.py just
like any other Python module. In the interactive shell, change the current
working directory to the folder with your newly created census2010.py file and
then import it:

>>> import os

>>> import census2010
>>> census2010.allData['AK']['Anchorage']
{'pop': 291826, 'tracts': 55}
>>> anchoragePop = census2010.allData['AK']['Anchorage']['pop']
>>> print('The 2010 population of Anchorage was ' + str(anchoragePop))
The 2010 population of Anchorage was 291826

The readCensusExcel.py program was throwaway code: once you have its
results saved to census2010.py, you won’t need to run the program again.
Whenever you need the county data, you can just run import census2010.

Calculating this data by hand would have taken hours; this program
did it in a few seconds. Using OpenPyXL, you will have no trouble extract-
ing information that is saved to an Excel spreadsheet and performing calcu-
lations on it. You can download the complete program from https://nostarch​
.com/automatestuff2/.

Ideas for Similar Programs
Many businesses and offices use Excel to store various types of data, and
it’s not uncommon for spreadsheets to become large and unwieldy. Any
program that parses an Excel spreadsheet has a similar structure: it loads
the spreadsheet file, preps some variables or data structures, and then loops
through each of the rows in the spreadsheet. Such a program could do
the following:

•	 Compare data across multiple rows in a spreadsheet.

•	 Open multiple Excel files and compare data between spreadsheets.

https://nostarch.com/
https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/

Working with Excel Spreadsheets 313

•	 Check whether a spreadsheet has blank rows or invalid data in any
cells and alert the user if it does.

•	 Read data from a spreadsheet and use it as the input for your
Python programs.

Writing Excel Documents
OpenPyXL also provides ways of writing data, meaning that your programs
can create and edit spreadsheet files. With Python, it’s simple to create
spreadsheets with thousands of rows of data.

Creating and Saving Excel Documents
Call the openpyxl.Workbook() function to create a new, blank Workbook object.
Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook() # Create a blank workbook.
>>> wb.sheetnames # It starts with one sheet.
['Sheet']
>>> sheet = wb.active
>>> sheet.title
'Sheet'
>>> sheet.title = 'Spam Bacon Eggs Sheet' # Change title.
>>> wb.sheetnames
['Spam Bacon Eggs Sheet']

The workbook will start off with a single sheet named Sheet. You can
change the name of the sheet by storing a new string in its title attribute.

Any time you modify the Workbook object or its sheets and cells, the
spreadsheet file will not be saved until you call the save() workbook method.
Enter the following into the interactive shell (with example.xlsx in the current
working directory):

>>> import openpyxl
>>> wb = openpyxl.load_workbook('example.xlsx')
>>> sheet = wb.active
>>> sheet.title = 'Spam Spam Spam'
>>> wb.save('example_copy.xlsx') # Save the workbook.

Here, we change the name of our sheet. To save our changes, we pass
a filename as a string to the save() method. Passing a different filename
than the original, such as 'example_copy.xlsx', saves the changes to a copy
of the spreadsheet.

Whenever you edit a spreadsheet you’ve loaded from a file, you should
always save the new, edited spreadsheet to a different filename than the
original. That way, you’ll still have the original spreadsheet file to work with
in case a bug in your code caused the new, saved file to have incorrect or
corrupt data.

314 Chapter 13

Creating and Removing Sheets
Sheets can be added to and removed from a workbook with the create_sheet()
method and del operator. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> wb.sheetnames
['Sheet']
>>> wb.create_sheet() # Add a new sheet.
<Worksheet "Sheet1">
>>> wb.sheetnames
['Sheet', 'Sheet1']
>>> # Create a new sheet at index 0.
>>> wb.create_sheet(index=0, title='First Sheet')
<Worksheet "First Sheet">
>>> wb.sheetnames
['First Sheet', 'Sheet', 'Sheet1']
>>> wb.create_sheet(index=2, title='Middle Sheet')
<Worksheet "Middle Sheet">
>>> wb.sheetnames
['First Sheet', 'Sheet', 'Middle Sheet', 'Sheet1']

The create_sheet() method returns a new Worksheet object named SheetX,
which by default is set to be the last sheet in the workbook. Optionally, the
index and name of the new sheet can be specified with the index and title
keyword arguments.

Continue the previous example by entering the following:

>>> wb.sheetnames
['First Sheet', 'Sheet', 'Middle Sheet', 'Sheet1']
>>> del wb['Middle Sheet']
>>> del wb['Sheet1']
>>> wb.sheetnames
['First Sheet', 'Sheet']

You can use the del operator to delete a sheet from a workbook, just like
you can use it to delete a key-value pair from a dictionary.

Remember to call the save() method to save the changes after adding
sheets to or removing sheets from the workbook.

Writing Values to Cells
Writing values to cells is much like writing values to keys in a dictionary.
Enter this into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> sheet = wb['Sheet']
>>> sheet['A1'] = 'Hello, world!' # Edit the cell's value.
>>> sheet['A1'].value
'Hello, world!'

Working with Excel Spreadsheets 315

If you have the cell’s coordinate as a string, you can use it just like a
dictionary key on the Worksheet object to specify which cell to write to.

Project: Updating a Spreadsheet
In this project, you’ll write a program to update cells in a spreadsheet of
produce sales. Your program will look through the spreadsheet, find spe-
cific kinds of produce, and update their prices. Download this spreadsheet
from https://nostarch.com/automatestuff2/. Figure 13-3 shows what the spread-
sheet looks like.

Figure 13-3: A spreadsheet of produce sales

Each row represents an individual sale. The columns are the type of
produce sold (A), the cost per pound of that produce (B), the number of
pounds sold (C), and the total revenue from the sale (D). The TOTAL col-
umn is set to the Excel formula =ROUND(B3*C3, 2), which multiplies the
cost per pound by the number of pounds sold and rounds the result to the
nearest cent. With this formula, the cells in the TOTAL column will auto-
matically update themselves if there is a change in column B or C.

Now imagine that the prices of garlic, celery, and lemons were entered
incorrectly, leaving you with the boring task of going through thousands
of rows in this spreadsheet to update the cost per pound for any garlic, cel-
ery, and lemon rows. You can’t do a simple find-and-replace for the price,
because there might be other items with the same price that you don’t want
to mistakenly “correct.” For thousands of rows, this would take hours to do
by hand. But you can write a program that can accomplish this in seconds.

Your program does the following:

1.	 Loops over all the rows

2.	 If the row is for garlic, celery, or lemons, changes the price

316 Chapter 13

This means your code will need to do the following:

1.	 Open the spreadsheet file.

2.	 For each row, check whether the value in column A is Celery, Garlic,
or Lemon.

3.	 If it is, update the price in column B.

4.	 Save the spreadsheet to a new file (so that you don’t lose the old spread-
sheet, just in case).

Step 1: Set Up a Data Structure with the Update Information
The prices that you need to update are as follows:

Celery	 1.19

Garlic	 3.07

Lemon	 1.27

You could write code like this:

if produceName == 'Celery':
 cellObj = 1.19
if produceName == 'Garlic':
 cellObj = 3.07
if produceName == 'Lemon':
 cellObj = 1.27

Having the produce and updated price data hardcoded like this is a
bit inelegant. If you needed to update the spreadsheet again with different
prices or different produce, you would have to change a lot of the code.
Every time you change code, you risk introducing bugs.

A more flexible solution is to store the corrected price information in
a dictionary and write your code to use this data structure. In a new file
editor tab, enter the following code:

#! python3
updateProduce.py - Corrects costs in produce sales spreadsheet.

import openpyxl

wb = openpyxl.load_workbook('produceSales.xlsx')
sheet = wb['Sheet']

The produce types and their updated prices
PRICE_UPDATES = {'Garlic': 3.07,
 'Celery': 1.19,
 'Lemon': 1.27}

TODO: Loop through the rows and update the prices.

Save this as updateProduce.py. If you need to update the spreadsheet again,
you’ll need to update only the PRICE_UPDATES dictionary, not any other code.

Working with Excel Spreadsheets 317

Step 2: Check All Rows and Update Incorrect Prices
The next part of the program will loop through all the rows in the spread-
sheet. Add the following code to the bottom of updateProduce.py:

#! python3
updateProduce.py - Corrects costs in produce sales spreadsheet.

--snip--

Loop through the rows and update the prices.
 for rowNum in range(2, sheet.max_row): # skip the first row
  produceName = sheet.cell(row=rowNum, column=1).value
  if produceName in PRICE_UPDATES:

 sheet.cell(row=rowNum, column=2).value = PRICE_UPDATES[produceName]

 wb.save('updatedProduceSales.xlsx')

We loop through the rows starting at row 2, since row 1 is just the
header . The cell in column 1 (that is, column A) will be stored in the
variable produceName . If produceName exists as a key in the PRICE_UPDATES dic-
tionary , then you know this is a row that must have its price corrected.
The correct price will be in PRICE_UPDATES[produceName].

Notice how clean using PRICE_UPDATES makes the code. Only one if state-
ment, rather than code like if produceName == 'Garlic': , is necessary for
every type of produce to update. And since the code uses the PRICE_UPDATES
dictionary instead of hardcoding the produce names and updated costs
into the for loop, you modify only the PRICE_UPDATES dictionary and not the
code if the produce sales spreadsheet needs additional changes.

After going through the entire spreadsheet and making changes, the
code saves the Workbook object to updatedProduceSales.xlsx . It doesn’t over-
write the old spreadsheet just in case there’s a bug in your program and the
updated spreadsheet is wrong. After checking that the updated spreadsheet
looks right, you can delete the old spreadsheet.

You can download the complete source code for this program from
https://nostarch.com/automatestuff2/.

Ideas for Similar Programs
Since many office workers use Excel spreadsheets all the time, a program
that can automatically edit and write Excel files could be really useful. Such
a program could do the following:

•	 Read data from one spreadsheet and write it to parts of other spreadsheets.

•	 Read data from websites, text files, or the clipboard and write it to a
spreadsheet.

•	 Automatically “clean up” data in spreadsheets. For example, it could
use regular expressions to read multiple formats of phone numbers and
edit them to a single, standard format.

318 Chapter 13

Setting the Font Style of Cells
Styling certain cells, rows, or columns can help you emphasize important
areas in your spreadsheet. In the produce spreadsheet, for example, your
program could apply bold text to the potato, garlic, and parsnip rows. Or
perhaps you want to italicize every row with a cost per pound greater than
$5. Styling parts of a large spreadsheet by hand would be tedious, but your
programs can do it instantly.

To customize font styles in cells, important, import the Font() function
from the openpyxl.styles module.

from openpyxl.styles import Font

This allows you to type Font() instead of openpyxl.styles.Font(). (See
“Importing Modules” on page 47 to review this style of import statement.)

Here’s an example that creates a new workbook and sets cell A1 to have
a 24-point, italicized font. Enter the following into the interactive shell:

>>> import openpyxl
>>> from openpyxl.styles import Font
>>> wb = openpyxl.Workbook()
>>> sheet = wb['Sheet']

 >>> italic24Font = Font(size=24, italic=True) # Create a font.
 >>> sheet['A1'].font = italic24Font # Apply the font to A1.

>>> sheet['A1'] = 'Hello, world!'
>>> wb.save('styles.xlsx')

In this example, Font(size=24, italic=True) returns a Font object, which is
stored in italic24Font . The keyword arguments to Font(), size and italic,
configure the Font object’s styling information. And when sheet['A1'].font
is assigned the italic24Font object , all that font styling information gets
applied to cell A1.

Font Objects
To set font attributes, you pass keyword arguments to Font(). Table 13-2
shows the possible keyword arguments for the Font() function.

Table 13-2: Keyword Arguments for Font Objects

Keyword argument Data type Description

name String The font name, such as 'Calibri' or 'Times New Roman'
size Integer The point size
bold Boolean True, for bold font
italic Boolean True, for italic font

Working with Excel Spreadsheets 319

You can call Font() to create a Font object and store that Font object in
a variable. You then assign that variable to a Cell object’s font attribute. For
example, this code creates various font styles:

>>> import openpyxl
>>> from openpyxl.styles import Font
>>> wb = openpyxl.Workbook()
>>> sheet = wb['Sheet']

>>> fontObj1 = Font(name='Times New Roman', bold=True)
>>> sheet['A1'].font = fontObj1
>>> sheet['A1'] = 'Bold Times New Roman'

>>> fontObj2 = Font(size=24, italic=True)
>>> sheet['B3'].font = fontObj2
>>> sheet['B3'] = '24 pt Italic'

>>> wb.save('styles.xlsx')

Here, we store a Font object in fontObj1 and then set the A1 Cell object’s
font attribute to fontObj1. We repeat the process with another Font object
to set the font of a second cell. After you run this code, the styles of the
A1 and B3 cells in the spreadsheet will be set to custom font styles, as
shown in Figure 13-4.

Figure 13-4: A spreadsheet with custom font styles

For cell A1, we set the font name to 'Times New Roman' and set bold to true,
so our text appears in bold Times New Roman. We didn’t specify a size, so
the openpyxl default, 11, is used. In cell B3, our text is italic, with a size of 24;
we didn’t specify a font name, so the openpyxl default, Calibri, is used.

Formulas
Excel formulas, which begin with an equal sign, can configure cells to
contain values calculated from other cells. In this section, you’ll use the
openpyxl module to programmatically add formulas to cells, just like any
normal value. For example:

>>> sheet['B9'] = '=SUM(B1:B8)'

320 Chapter 13

This will store =SUM(B1:B8) as the value in cell B9. This sets the B9 cell
to a formula that calculates the sum of values in cells B1 to B8. You can see
this in action in Figure 13-5.

Figure 13-5: Cell B9 contains the formula =SUM(B1:B8),
which adds the cells B1 to B8.

An Excel formula is set just like any other text value in a cell. Enter the
following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> sheet = wb.active
>>> sheet['A1'] = 200
>>> sheet['A2'] = 300
>>> sheet['A3'] = '=SUM(A1:A2)' # Set the formula.
>>> wb.save('writeFormula.xlsx')

The cells in A1 and A2 are set to 200 and 300, respectively. The value
in cell A3 is set to a formula that sums the values in A1 and A2. When the
spreadsheet is opened in Excel, A3 will display its value as 500.

Excel formulas offer a level of programmability for spreadsheets but can
quickly become unmanageable for complicated tasks. For example, even if
you’re deeply familiar with Excel formulas, it’s a headache to try to decipher
what =IFERROR(TRIM(IF(LEN(VLOOKUP(F7, Sheet2!A1:B10000, 2,
FALSE))>0,SUBSTITUTE(VLOOKUP(F7, Sheet2!A1:B10000, 2, FALSE),
" ", ""),"")), "") actually does. Python code is much more readable.

Adjusting Rows and Columns
In Excel, adjusting the sizes of rows and columns is as easy as clicking and
dragging the edges of a row or column header. But if you need to set a row

Working with Excel Spreadsheets 321

or column’s size based on its cells’ contents or if you want to set sizes in a
large number of spreadsheet files, it will be much quicker to write a Python
program to do it.

Rows and columns can also be hidden entirely from view. Or they can
be “frozen” in place so that they are always visible on the screen and appear
on every page when the spreadsheet is printed (which is handy for headers).

Setting Row Height and Column Width
Worksheet objects have row_dimensions and column_dimensions attributes that
control row heights and column widths. Enter this into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> sheet = wb.active
>>> sheet['A1'] = 'Tall row'
>>> sheet['B2'] = 'Wide column'
>>> # Set the height and width:
>>> sheet.row_dimensions[1].height = 70
>>> sheet.column_dimensions['B'].width = 20
>>> wb.save('dimensions.xlsx')

A sheet’s row_dimensions and column_dimensions are dictionary-like values;
row_dimensions contains RowDimension objects and column_dimensions contains
ColumnDimension objects. In row_dimensions, you can access one of the objects
using the number of the row (in this case, 1 or 2). In column_dimensions, you
can access one of the objects using the letter of the column (in this case,
A or B).

The dimensions.xlsx spreadsheet looks like Figure 13-6.

Figure 13-6: Row 1 and column B set to
larger heights and widths

Once you have the RowDimension object, you can set its height. Once you
have the ColumnDimension object, you can set its width. The row height can
be set to an integer or float value between 0 and 409. This value represents
the height measured in points, where one point equals 1/72 of an inch. The
default row height is 12.75. The column width can be set to an integer or
float value between 0 and 255. This value represents the number of charac-
ters at the default font size (11 point) that can be displayed in the cell. The
default column width is 8.43 characters. Columns with widths of 0 or rows
with heights of 0 are hidden from the user.

322 Chapter 13

Merging and Unmerging Cells
A rectangular area of cells can be merged into a single cell with the
merge_cells() sheet method. Enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> sheet = wb.active
>>> sheet.merge_cells('A1:D3') # Merge all these cells.
>>> sheet['A1'] = 'Twelve cells merged together.'
>>> sheet.merge_cells('C5:D5') # Merge these two cells.
>>> sheet['C5'] = 'Two merged cells.'
>>> wb.save('merged.xlsx')

The argument to merge_cells() is a single string of the top-left and bottom-​
right cells of the rectangular area to be merged: 'A1:D3' merges 12 cells into
a single cell. To set the value of these merged cells, simply set the value of
the top-left cell of the merged group.

When you run this code, merged.xlsx will look like Figure 13-7.

Figure 13-7: Merged cells in a spreadsheet

To unmerge cells, call the unmerge_cells() sheet method. Enter this into
the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('merged.xlsx')
>>> sheet = wb.active
>>> sheet.unmerge_cells('A1:D3') # Split these cells up.
>>> sheet.unmerge_cells('C5:D5')
>>> wb.save('merged.xlsx')

If you save your changes and then take a look at the spreadsheet, you’ll
see that the merged cells have gone back to being individual cells.

Freezing Panes
For spreadsheets too large to be displayed all at once, it’s helpful to
“freeze” a few of the top rows or leftmost columns onscreen. Frozen col-
umn or row headers, for example, are always visible to the user even as

Working with Excel Spreadsheets 323

they scroll through the spreadsheet. These are known as freeze panes. In
OpenPyXL, each Worksheet object has a freeze_panes attribute that can be
set to a Cell object or a string of a cell’s coordinates. Note that all rows
above and all columns to the left of this cell will be frozen, but the row
and column of the cell itself will not be frozen.

To unfreeze all panes, set freeze_panes to None or 'A1'. Table 13-3 shows
which rows and columns will be frozen for some example settings of
freeze_panes.

Table 13-3: Frozen Pane Examples

freeze_panes setting Rows and columns frozen

sheet.freeze_panes = 'A2' Row 1
sheet.freeze_panes = 'B1' Column A
sheet.freeze_panes = 'C1' Columns A and B
sheet.freeze_panes = 'C2' Row 1 and columns A and B
sheet.freeze_panes =
'A1' or sheet.freeze_panes = None

No frozen panes

Make sure you have the produce sales spreadsheet from https://nostarch​
.com/automatestuff2/. Then enter the following into the interactive shell:

>>> import openpyxl
>>> wb = openpyxl.load_workbook('produceSales.xlsx')
>>> sheet = wb.active
>>> sheet.freeze_panes = 'A2' # Freeze the rows above A2.
>>> wb.save('freezeExample.xlsx')

If you set the freeze_panes attribute to 'A2', row 1 will always be view-
able, no matter where the user scrolls in the spreadsheet. You can see this in
Figure 13-8.

Figure 13-8: With freeze_panes set to 'A2', row 1 is always visible, even as the user
scrolls down.

https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/

324 Chapter 13

Charts
OpenPyXL supports creating bar, line, scatter, and pie charts using the
data in a sheet’s cells. To make a chart, you need to do the following:

1.	 Create a Reference object from a rectangular selection of cells.

2.	 Create a Series object by passing in the Reference object.

3.	 Create a Chart object.

4.	 Append the Series object to the Chart object.

5.	 Add the Chart object to the Worksheet object, optionally specifying which
cell should be the top-left corner of the chart.

The Reference object requires some explaining. You create Reference objects
by calling the openpyxl.chart.Reference() function and passing three arguments:

1.	 The Worksheet object containing your chart data.

2.	 A tuple of two integers, representing the top-left cell of the rectangu-
lar selection of cells containing your chart data: the first integer in the
tuple is the row, and the second is the column. Note that 1 is the first
row, not 0.

3.	 A tuple of two integers, representing the bottom-right cell of the rect-
angular selection of cells containing your chart data: the first integer in
the tuple is the row, and the second is the column.

Figure 13-9 shows some sample coordinate arguments.

Figure 13-9: From left to right: (1, 1), (10, 1); (3, 2), (6, 4); (5, 3), (5, 3)

Enter this interactive shell example to create a bar chart and add it to
the spreadsheet:

>>> import openpyxl
>>> wb = openpyxl.Workbook()
>>> sheet = wb.active
>>> for i in range(1, 11): # create some data in column A
... sheet['A' + str(i)] = i
...
>>> refObj = openpyxl.chart.Reference(sheet, min_col=1, min_row=1, max_col=1,
max_row=10)

Working with Excel Spreadsheets 325

>>> seriesObj = openpyxl.chart.Series(refObj, title='First series')

>>> chartObj = openpyxl.chart.BarChart()
>>> chartObj.title = 'My Chart'
>>> chartObj.append(seriesObj)

>>> sheet.add_chart(chartObj, 'C5')
>>> wb.save('sampleChart.xlsx')

This produces a spreadsheet that looks like Figure 13-10.

The top-left corner is in C5.

Figure 13-10: A spreadsheet with a chart added

We’ve created a bar chart by calling openpyxl.chart.BarChart(). You can
also create line charts, scatter charts, and pie charts by calling openpyxl.charts​
.LineChart(), openpyxl.chart.ScatterChart(), and openpyxl.chart.PieChart().

Summary
Often the hard part of processing information isn’t the processing itself but
simply getting the data in the right format for your program. But once you
have your spreadsheet loaded into Python, you can extract and manipulate
its data much faster than you could by hand.

You can also generate spreadsheets as output from your programs. So
if colleagues need your text file or PDF of thousands of sales contacts trans-
ferred to a spreadsheet file, you won’t have to tediously copy and paste it all
into Excel.

Equipped with the openpyxl module and some programming knowl-
edge, you’ll find processing even the biggest spreadsheets a piece of cake.

In the next chapter, we’ll take a look at using Python to interact with
another spreadsheet program: the popular online Google Sheets application.

326 Chapter 13

Practice Questions
For the following questions, imagine you have a Workbook object in the vari-
able wb, a Worksheet object in sheet, a Cell object in cell, a Comment object in
comm, and an Image object in img.

1.	 What does the openpyxl.load_workbook() function return?

2.	 What does the wb.sheetnames workbook attribute contain?

3.	 How would you retrieve the Worksheet object for a sheet named 'Sheet1'?

4.	 How would you retrieve the Worksheet object for the workbook’s
active sheet?

5.	 How would you retrieve the value in the cell C5?

6.	 How would you set the value in the cell C5 to "Hello"?

7.	 How would you retrieve the cell’s row and column as integers?

8.	 What do the sheet.max_column and sheet.max_row sheet attributes hold,
and what is the data type of these attributes?

9.	 If you needed to get the integer index for column 'M', what function
would you need to call?

10.	 If you needed to get the string name for column 14, what function
would you need to call?

11.	 How can you retrieve a tuple of all the Cell objects from A1 to F1?

12.	 How would you save the workbook to the filename example.xlsx?

13.	 How do you set a formula in a cell?

14.	 If you want to retrieve the result of a cell’s formula instead of the
cell’s formula itself, what must you do first?

15.	 How would you set the height of row 5 to 100?

16.	 How would you hide column C?

17.	 What is a freeze pane?

18.	 What five functions and methods do you have to call to create a
bar chart?

Practice Projects
For practice, write programs that perform the following tasks.

Multiplication Table Maker
Create a program multiplicationTable.py that takes a number N from the com-
mand line and creates an N×N multiplication table in an Excel spreadsheet.
For example, when the program is run like this:

py multiplicationTable.py 6

. . . it should create a spreadsheet that looks like Figure 13-11.

Working with Excel Spreadsheets 327

Figure 13-11: A multiplication table generated in a spreadsheet

Row 1 and column A should be used for labels and should be in bold.

Blank Row Inserter
Create a program blankRowInserter.py that takes two integers and a filename
string as command line arguments. Let’s call the first integer N and the sec-
ond integer M. Starting at row N, the program should insert M blank rows
into the spreadsheet. For example, when the program is run like this:

python blankRowInserter.py 3 2 myProduce.xlsx

. . . the “before” and “after” spreadsheets should look like Figure 13-12.

Figure 13-12: Before (left) and after (right) the two blank rows are inserted at row 3

You can write this program by reading in the contents of the spread-
sheet. Then, when writing out the new spreadsheet, use a for loop to copy
the first N lines. For the remaining lines, add M to the row number in the
output spreadsheet.

Spreadsheet Cell Inverter
Write a program to invert the row and column of the cells in the spread-
sheet. For example, the value at row 5, column 3 will be at row 3, column 5
(and vice versa). This should be done for all cells in the spreadsheet. For
example, the “before” and “after” spreadsheets would look something like
Figure 13-13.

328 Chapter 13

Figure 13-13: The spreadsheet before (top) and after (bottom) inversion

You can write this program by using nested for loops to read the
spreadsheet’s data into a list of lists data structure. This data structure
could have sheetData[x][y] for the cell at column x and row y. Then, when
writing out the new spreadsheet, use sheetData[y][x] for the cell at column
x and row y.

Text Files to Spreadsheet
Write a program to read in the contents of several text files (you can make
the text files yourself) and insert those contents into a spreadsheet, with
one line of text per row. The lines of the first text file will be in the cells of
column A, the lines of the second text file will be in the cells of column B,
and so on.

Use the readlines() File object method to return a list of strings, one
string per line in the file. For the first file, output the first line to column 1,
row 1. The second line should be written to column 1, row 2, and so on. The
next file that is read with readlines() will be written to column 2, the next
file to column 3, and so on.

Spreadsheet to Text Files
Write a program that performs the tasks of the previous program in reverse
order: the program should open a spreadsheet and write the cells of column
A into one text file, the cells of column B into another text file, and so on.

Google Sheets, the free, web-based spread-
sheet application available to anyone with

a Google account or Gmail address, has
become a useful, feature-rich competitor to

Excel. Google Sheets has its own API, but this API can
be confusing to learn and use. This chapter covers the
EZSheets third-party module, documented at https://ezsheets.readthedocs.io/.
While not as full featured as the official Google Sheets API, EZSheets
makes common spreadsheet tasks easy to perform.

Installing and Setting Up EZSheets
You can install EZSheets by opening a new terminal window and run-
ning pip install --user ezsheets. As part of this installation, EZSheets
will also install the google-api-python-client, google-auth-httplib2, and

14
W O R K I N G W I T H G O O G L E S H E E T S

https://ezsheets.readthedocs.io/

330 Chapter 14

google-auth-oauthlib modules. These modules allow your program to log in
to Google’s servers and make API requests. EZSheets handles the interac-
tion with these modules, so you don’t need to concern yourself with how
they work.

Obtaining Credentials and Token Files
Before you can use EZSheets, you need to enable the Google Sheets and
Google Drive APIs for your Google account. Visit the following web pages
and click the Enable API buttons at the top of each:

•	 https://console.developers.google.com/apis/library/sheets.googleapis.com/

•	 https://console.developers.google.com/apis/library/drive.googleapis.com/

You’ll also need to obtain three files, which you should save in the same
folder as your .py Python script that uses EZSheets:

•	 A credentials file named credentials-sheets.json

•	 A token for Google Sheets named token-sheets.pickle

•	 A token for Google Drive named token-drive.pickle

The credentials file will generate the token files. The easiest way to
obtain a credentials file is to go to the Google Sheets Python Quickstart
page at https://developers.google.com/sheets/api/quickstart/python/ and click the
blue Enable the Google Sheets API button, as shown in Figure 14-1. You’ll
need to log in to your Google account to view this page.

Figure 14-1: Obtaining a credentials.json file.

Clicking this button will bring up a window with a Download Client
Configuration link that lets you download a credentials.json file. Rename
this file to credentials-sheets.json and place it in the same folder as your
Python scripts.

Working with Google Sheets 331

Once you have a credentials-sheets.json file, run the import ezsheets mod-
ule. The first time you import the EZSheets module, it will open a new
browser window for you to log in to your Google account. Click Allow, as
shown in Figure 14-2.

Figure 14-2: Allowing Quickstart to access your Google account

The message about Quickstart comes from the fact that you down-
loaded the credentials file from the Google Sheets Python Quickstart page.
Note that this window will open twice : first for Google Sheets access and sec-
ond for Google Drive access. EZSheets uses Google Drive access to upload,
download, and delete spreadsheets.

After you log in, the browser window will prompt you to close it, and
the token-sheets.pickle and token-drive.pickle files will appear in the same folder
as credentials-sheets.json. You only need to go through this process the first
time you run import ezsheets.

If you encounter an error after clicking Allow and the page seems to
hang, make sure you have first enabled the Google Sheets and Drive APIs
from the links at the start of this section. It may take a few minutes for
Google’s servers to register this change, so you may have to wait before
you can use EZSheets.

Don’t share the credential or token files with anyone—treat them
like passwords.

332 Chapter 14

Revoking the Credentials File
If you accidentally share the credential or token files with someone,
they won’t be able to change your Google account password, but
they will have access to your spreadsheets. You can revoke these files
by going to the Google Cloud Platform developer’s console page at
https://console.developers.google.com/. You’ll need to log in to your Google
account to view this page. Click the Credentials link on the sidebar. Then
click the trash can icon next to the credentials file you’ve accidentally
shared, as shown in Figure 14-3.

Credentials
sidebar link

Create credentials button

Trash
can icon

Download
icon

Credentials
sidebar link

Create credentials button

Trash
can icon

Download
icon

Credentials
sidebar link

Create credentials button

Trash
can icon

Download
icon

Figure 14-3: The Credentials page in the Google Cloud Platform developer’s console

To generate a new credentials file from this page, click the Create
Credentials button and select OAuth client ID, also shown in Figure 14-3.
Next, for Application Type, select Other and give the file any name you like.
This new credentials file will then be listed on the page, and you can click
on the download icon to download it. The downloaded file will have a long,
complicated filename, so you should rename it to the default filename that
EZSheets attempts to load: credentials-sheets.json. You can also generate a new
credential file by clicking the Enable the Google Sheets API button men-
tioned in the previous section.

Spreadsheet Objects
In Google Sheets, a spreadsheet can contain multiple sheets (also called work-
sheets), and each sheet contains columns and rows of values. Figure 14-4
shows a spreadsheet titled “Education Data” containing three sheets titled
“Students,” “Classes,” and “Resources.” The first column of each sheet is
labeled A, and the first row is labeled 1.

Working with Google Sheets 333

Figure 14-4: A spreadsheet titled “Education Data” with three sheets

While most of your work will involve modifying the Sheet objects, you
can also modify Spreadsheet objects, as you’ll see in the next section.

Creating, Uploading, and Listing Spreadsheets
You can make a new Spreadsheet object from an existing spreadsheet, a blank
spreadsheet, or an uploaded spreadsheet. To make a Spreadsheet object from
an existing Google Sheets spreadsheet, you’ll need the spreadsheet’s ID
string. The unique ID for a Google Sheets spreadsheet can be found in the
URL, after the spreadsheets/d/ part and before the /edit part. For example,
the spreadsheet featured in Figure 14-4 is located at the URL https://docs​
.google.com/spreadsheets/d/1J-Jx6Ne2K_vqI9J2SO-TAXOFbxx_9tUjwnkPC22LjeU​
/edit#gid=151537240/, so its ID is 1J-Jx6Ne2K_vqI9J2SO-TAXOFbxx_9tUjwnkPC22LjeU.

N O T E 	 The specific spreadsheet IDs used in this chapter are for my Google account’s
spreadsheets. They won’t work if you enter them into your interactive shell. Go to
https://sheets.google.com/ to create spreadsheets under your account and then
get the IDs from the address bar.

Pass your spreadsheet’s ID as a string to the ezsheets.Spreadsheet() func-
tion to obtain a Spreadsheet object for its spreadsheet:

>>> import ezsheets
>>> ss = ezsheets.Spreadsheet('1J-Jx6Ne2K_vqI9J2SO-TAXOFbxx_9tUjwnkPC22LjeU')
>>> ss
Spreadsheet(spreadsheetId='1J-Jx6Ne2K_vqI9J2SO-TAXOFbxx_9tUjwnkPC22LjeU')
>>> ss.title
'Education Data'

334 Chapter 14

For convenience, you can also obtain a Spreadsheet object of an existing
spreadsheet by passing the spreadsheet’s full URL to the function. Or, if
there is only one spreadsheet in your Google account with that title, you can
pass the title of the spreadsheet as a string.

To make a new, blank spreadsheet, call the ezsheets.createSpreadsheet()
function and pass it a string for the new spreadsheet’s title. For example,
enter the following into the interactive shell:

>>> import ezsheets
>>> ss = ezsheets.createSpreadsheet('Title of My New Spreadsheet')
>>> ss.title
'Title of My New Spreadsheet'

To upload an existing Excel, OpenOffice, CSV, or TSV spreadsheet to
Google Sheets, pass the filename of the spreadsheet to ezsheets.upload().
Enter the following into the interactive shell, replacing my_spreadsheet.xlsx
with a spreadsheet file of your own:

>>> import ezsheets
>>> ss = ezsheets.upload('my_spreadsheet.xlsx')
>>> ss.title
'my_spreadsheet'

You can list the spreadsheets in your Google account by calling the
listSpreadsheets() function. Enter the following into the interactive shell
after uploading a spreadsheet:

>>> ezsheets.listSpreadsheets()
{'1J-Jx6Ne2K_vqI9J2SO-TAXOFbxx_9tUjwnkPC22LjeU': 'Education Data'}

The listSpreadsheets() function returns a dictionary where the keys are
spreadsheet IDs and the values are the titles of each spreadsheet.

Once you’ve obtained a Spreadsheet object, you can use its attributes and
methods to manipulate the online spreadsheet hosted on Google Sheets.

Spreadsheet Attributes
While the actual data lives in a spreadsheet’s individual sheets, the Spreadsheet
object has the following attributes for manipulating the spreadsheet itself:
title, spreadsheetId, url, sheetTitles, and sheets. Enter the following into the
interactive shell:

>>> import ezsheets
>>> ss = ezsheets.Spreadsheet('1J-Jx6Ne2K_vqI9J2SO-TAXOFbxx_9tUjwnkPC22LjeU')
>>> ss.title # The title of the spreadsheet.
'Education Data'
>>> ss.title = 'Class Data' # Change the title.
>>> ss.spreadsheetId # The unique ID (this is a read-only attribute).
'1J-Jx6Ne2K_vqI9J2SO-TAXOFbxx_9tUjwnkPC22LjeU'
>>> ss.url # The original URL (this is a read-only attribute).

Working with Google Sheets 335

'https://docs.google.com/spreadsheets/d/1J-Jx6Ne2K_vqI9J2SO-
TAXOFbxx_9tUjwnkPC22LjeU/'
>>> ss.sheetTitles # The titles of all the Sheet objects
('Students', 'Classes', 'Resources')
>>> ss.sheets # The Sheet objects in this Spreadsheet, in order.
(<Sheet sheetId=0, title='Students', rowCount=1000, columnCount=26>, <Sheet
sheetId=1669384683, title='Classes', rowCount=1000, columnCount=26>, <Sheet
sheetId=151537240, title='Resources', rowCount=1000, columnCount=26>)
>>> ss[0] # The first Sheet object in this Spreadsheet.
<Sheet sheetId=0, title='Students', rowCount=1000, columnCount=26>
>>> ss['Students'] # Sheets can also be accessed by title.
<Sheet sheetId=0, title='Students', rowCount=1000, columnCount=26>
>>> del ss[0] # Delete the first Sheet object in this Spreadsheet.
>>> ss.sheetTitles # The "Students" Sheet object has been deleted:
('Classes', 'Resources')

If someone changes the spreadsheet through the Google Sheets web-
site, your script can update the Spreadsheet object to match the online data
by calling the refresh() method:

>>> ss.refresh()

This will refresh not only the Spreadsheet object’s attributes but also
the data in the Sheet objects it contains. The changes you make to the
Spreadsheet object will be reflected in the online spreadsheet in real time.

Downloading and Uploading Spreadsheets
You can download a Google Sheets spreadsheet in a number of formats:
Excel, OpenOffice, CSV, TSV, and PDF. You can also download it as a ZIP
file containing HTML files of the spreadsheet’s data. EZSheets contains
functions for each of these options:

>>> import ezsheets
>>> ss = ezsheets.Spreadsheet('1J-Jx6Ne2K_vqI9J2SO-TAXOFbxx_9tUjwnkPC22LjeU')
>>> ss.title
'Class Data'
>>> ss.downloadAsExcel() # Downloads the spreadsheet as an Excel file.
'Class_Data.xlsx'
>>> ss.downloadAsODS() # Downloads the spreadsheet as an OpenOffice file.
'Class_Data.ods'
>>> ss.downloadAsCSV() # Only downloads the first sheet as a CSV file.
'Class_Data.csv'
>>> ss.downloadAsTSV() # Only downloads the first sheet as a TSV file.
'Class_Data.tsv'
>>> ss.downloadAsPDF() # Downloads the spreadsheet as a PDF.
'Class_Data.pdf'
>>> ss.downloadAsHTML() # Downloads the spreadsheet as a ZIP of HTML files.
'Class_Data.zip'

Note that files in the CSV and TSV formats can contain only one sheet;
therefore, if you download a Google Sheets spreadsheet in this format, you

336 Chapter 14

will get the first sheet only. To download other sheets, you’ll need to change
the Sheet object’s index attribute to 0. See “Creating and Deleting Sheets” on
page 341 for information on how to do this.

The download functions all return a string of the downloaded file’s file-
name. You can also specify your own filename for the spreadsheet by pass-
ing the new filename to the download function:

>>> ss.downloadAsExcel('a_different_filename.xlsx')
'a_different_filename.xlsx'

The function should return the updated filename.

Deleting Spreadsheets
To delete a spreadsheet, call the delete() method:

>>> import ezsheets
>>> ss = ezsheets.createSpreadsheet('Delete me') # Create the spreadsheet.
>>> ezsheets.listSpreadsheets() # Confirm that we've created a spreadsheet.
{'1aCw2NNJSZblDbhygVv77kPsL3djmgV5zJZllSOZ_mRk': 'Delete me'}
>>> ss.delete() # Delete the spreadsheet.
>>> ezsheets.listSpreadsheets()
{}

The delete() method will move your spreadsheet to the Trash folder on
your Google Drive. You can view the contents of your Trash folder at https://
drive.google.com/drive/trash. To permanently delete your spreadsheet, pass
True for the permanent keyword argument:

>>> ss.delete(permanent=True)

In general, permanently deleting your spreadsheets is not a good idea,
because it would be impossible to recover a spreadsheet that a bug in your
script accidentally deleted. Even free Google Drive accounts have gigabytes
of storage available, so you most likely don’t need to worry about freeing
up space.

Sheet Objects
A Spreadsheet object will have one or more Sheet objects. The Sheet objects
represent the rows and columns of data in each sheet. You can access
these sheets using the square brackets operator and an integer index.
The Spreadsheet object’s sheets attribute holds a tuple of Sheet objects
in the order in which they appear in the spreadsheet. To access the Sheet
objects in a spreadsheet, enter the following into the interactive shell:

>>> import ezsheets
>>> ss = ezsheets.Spreadsheet('1J-Jx6Ne2K_vqI9J2SO-TAXOFbxx_9tUjwnkPC22LjeU')
>>> ss.sheets # The Sheet objects in this Spreadsheet, in order.

https://drive.google.com/drive/trash
https://drive.google.com/drive/trash

Working with Google Sheets 337

(<Sheet sheetId=1669384683, title='Classes', rowCount=1000, columnCount=26>,
<Sheet sheetId=151537240, title='Resources', rowCount=1000, columnCount=26>)
>>> ss.sheets[0] # Gets the first Sheet object in this Spreadsheet.
<Sheet sheetId=1669384683, title='Classes', rowCount=1000, columnCount=26>
>>> ss[0] # Also gets the first Sheet object in this Spreadsheet.
<Sheet sheetId=1669384683, title='Classes', rowCount=1000, columnCount=26>

You can also obtain a Sheet object with the square brackets operator
and a string of the sheet’s name. The Spreadsheet object’s sheetTitles attri-
bute holds a tuple of all the sheet titles. For example, enter the following
into the interactive shell:

>>> ss.sheetTitles # The titles of all the Sheet objects in this Spreadsheet.
('Classes', 'Resources')
>>> ss['Classes'] # Sheets can also be accessed by title.
<Sheet sheetId=1669384683, title='Classes', rowCount=1000, columnCount=26>

Once you have a Sheet object, you can read data from and write data to
it using the Sheet object’s methods, as explained in the next section.

Reading and Writing Data
Just as in Excel, Google Sheets worksheets have columns and rows of cells
containing data. You can use the square brackets operator to read and write
data from and to these cells. For example, to create a new spreadsheet and
add data to it, enter the following into the interactive shell:

>>> import ezsheets
>>> ss = ezsheets.createSpreadsheet('My Spreadsheet')
>>> sheet = ss[0] # Get the first sheet in this spreadsheet.
>>> sheet.title
'Sheet1'
>>> sheet = ss[0]
>>> sheet['A1'] = 'Name' # Set the value in cell A1.
>>> sheet['B1'] = 'Age'
>>> sheet['C1'] = 'Favorite Movie'
>>> sheet['A1'] # Read the value in cell A1.
'Name'
>>> sheet['A2'] # Empty cells return a blank string.
''
>>> sheet[2, 1] # Column 2, Row 1 is the same address as B1.
'Age'
>>> sheet['A2'] = 'Alice'
>>> sheet['B2'] = 30
>>> sheet['C2'] = 'RoboCop'

These instructions should produce a Google Sheets spreadsheet that
looks like Figure 14-5.

338 Chapter 14

Figure 14-5: The spreadsheet created with the example instructions

Multiple users can update a sheet simultaneously. To refresh the local
data in the Sheet object, call its refresh() method:

>>> sheet.refresh()

All of the data in the Sheet object is loaded when the Spreadsheet object
is first loaded, so the data is read instantly. However, writing values to the
online spreadsheet requires a network connection and can take about a sec-
ond. If you have thousands of cells to update, updating them one at a time
might be quite slow.

Column and Row Addressing

Cell addressing works in Google Sheets just like in Excel. The only dif-
ference is that, unlike Python’s 0-based list indexes, Google Sheets have
1-based columns and rows: the first column or row is at index 1, not 0.
You can convert the 'A2' string-style address to the (column, row) tuple-
style address (and vice versa) with the convertAddress() function. The
getColumnLetterOf() and getColumnNumberOf() functions will also convert a
column address between letters and numbers. Enter the following into
the interactive shell:

>>> import ezsheets
>>> ezsheets.convertAddress('A2') # Converts addresses...
(1, 2)
>>> ezsheets.convertAddress(1, 2) # ...and converts them back, too.
'A2'
>>> ezsheets.getColumnLetterOf(2)
'B'
>>> ezsheets.getColumnNumberOf('B')
2
>>> ezsheets.getColumnLetterOf(999)
'ALK'

Working with Google Sheets 339

>>> ezsheets.getColumnNumberOf('ZZZ')
18278

The 'A2' string-style addresses are convenient if you’re typing addresses
into your source code. But the (column, row) tuple-style addresses are conve-
nient if you’re looping over a range of addresses and need a numeric form for
the column. The convertAddress(), getColumnLetterOf(), and getColumnNumberOf()
functions are helpful when you need to convert between the two formats.

Reading and Writing Entire Columns and Rows

As mentioned, writing data one cell at a time can often take too long.
Fortunately, EZSheets has Sheet methods for reading and writing entire
columns and rows at the same time. The getColumn(), getRow(), updateColumn(),
and updateRow() methods will, respectively, read and write columns and
rows. These methods make requests to the Google Sheets servers to update
the spreadsheet, so they require that you be connected to the internet. In
this section’s example, we’ll upload produceSales.xlsx from the last chapter
to Google Sheets. The first eight rows look like Table 14-1.

Table 14-1: The First Eight Rows of the produceSales.xlsx Spreadsheet

A B C D

1 PRODUCE COST PER POUND POUNDS SOLD TOTAL

2 Potatoes 0.86 21.6 18.58

3 Okra 2.26 38.6 87.24

4 Fava beans 2.69 32.8 88.23

5 Watermelon 0.66 27.3 18.02

6 Garlic 1.19 4.9 5.83

7 Parsnips 2.27 1.1 2.5

8 Asparagus 2.49 37.9 94.37

To upload this spreadsheet, enter the following into the interactive shell:

>>> import ezsheets
>>> ss = ezsheets.upload('produceSales.xlsx')
>>> sheet = ss[0]
>>> sheet.getRow(1) # The first row is row 1, not row 0.
['PRODUCE', 'COST PER POUND', 'POUNDS SOLD', 'TOTAL', '', '']
>>> sheet.getRow(2)
['Potatoes', '0.86', '21.6', '18.58', '', '']
>>> columnOne = sheet.getColumn(1)
>>> sheet.getColumn(1)
['PRODUCE', 'Potatoes', 'Okra', 'Fava beans', 'Watermelon', 'Garlic',
--snip--
>>> sheet.getColumn('A') # Same result as getColumn(1)
['PRODUCE', 'Potatoes', 'Okra', 'Fava beans', 'Watermelon', 'Garlic',
--snip--
>>> sheet.getRow(3)

340 Chapter 14

['Okra', '2.26', '38.6', '87.24', '', '']
>>> sheet.updateRow(3, ['Pumpkin', '11.50', '20', '230'])
>>> sheet.getRow(3)
['Pumpkin', '11.50', '20', '230', '', '']
>>> columnOne = sheet.getColumn(1)
>>> for i, value in enumerate(columnOne):
... # Make the Python list contain uppercase strings:
... columnOne[i] = value.upper()
...
>>> sheet.updateColumn(1, columnOne) # Update the entire column in one
request.

The getRow() and getColumn() functions retrieve the data from every cell
in a specific row or column as a list of values. Note that empty cells become
blank string values in the list. You can pass getColumn() either a column
number or letter to tell it to retrieve a specific column’s data. The previous
example shows that getColumn(1) and getColumn('A') return the same list.

The updateRow() and updateColumn() functions will overwrite all the data
in the row or column, respectively, with the list of values passed to the func-
tion. In this example, the third row initially contains information about
okra, but the updateRow() call replaces it with data about pumpkin. Call
sheet.getRow(3) again to view the new values in the third row.

Next, let’s update the “produceSales” spreadsheet. Updating cells one
at a time is slow if you have many cells to update. Getting a column or row
as a list, updating the list, and then updating the entire column or row with
the list is much faster, since all the changes can be made in one request.

To get all of the rows at once, call the getRows() method to return a list
of lists. The inner lists inside the outer list each represent a single row of the
sheet. You can modify the values in this data structure to change the produce
name, pounds sold, and total cost of some of the rows. Then you pass it to the
updateRows() method by entering the following into the interactive shell:

>>> rows = sheet.getRows() # Get every row in the spreadsheet.
>>> rows[0] # Examine the values in the first row.
['PRODUCE', 'COST PER POUND', 'POUNDS SOLD', 'TOTAL', '', '']
>>> rows[1]
['POTATOES', '0.86', '21.6', '18.58', '', '']
>>> rows[1][0] = 'PUMPKIN' # Change the produce name.
>>> rows[1]
['PUMPKIN', '0.86', '21.6', '18.58', '', '']
>>> rows[10]
['OKRA', '2.26', '40', '90.4', '', '']
>>> rows[10][2] = '400' # Change the pounds sold.
>>> rows[10][3] = '904' # Change the total.
>>> rows[10]
['OKRA', '2.26', '400', '904', '', '']
>>> sheet.updateRows(rows) # Update the online spreadsheet with the changes.

You can update the entire sheet in a single request by passing updateRows()
the list of lists returned from getRows(), amended with the changes made to
rows 1 and 10.

Working with Google Sheets 341

Note that the rows in the Google Sheet have empty strings at the end.
This is because the uploaded sheet has a column count of 6, but we have
only 4 columns of data. You can read the number of rows and columns in
a sheet with the rowCount and columnCount attributes. Then by setting these
values, you can change the size of the sheet.

>>> sheet.rowCount # The number of rows in the sheet.
23758
>>> sheet.columnCount # The number of columns in the sheet.
6
>>> sheet.columnCount = 4 # Change the number of columns to 4.
>>> sheet.columnCount # Now the number of columns in the sheet is 4.
4

These instructions should delete the fifth and sixth columns of the
“produceSales” spreadsheet, as shown in Figure 14-6.

Figure 14-6: The sheet before (left) and after (right) changing the column count to 4

According to https://support.google.com/drive/answer/37603?hl=en/,
Google Sheets spreadsheets can have up to 5 million cells in them.
However, it’s a good idea to make sheets only as big as you need to mini-
mize the time it takes to update and refresh the data.

Creating and Deleting Sheets
All Google Sheets spreadsheets start with a single sheet named “Sheet1.” You
can add additional sheets to the end of the list of sheets with the createSheet()
method, to which you pass a string to use as the new sheet’s title. An optional
second argument can specify the integer index of the new sheet. To create a
spreadsheet and then add new sheets to it, enter the following into the inter-
active shell:

>>> import ezsheets
>>> ss = ezsheets.createSpreadsheet('Multiple Sheets')
>>> ss.sheetTitles
('Sheet1',)

342 Chapter 14

>>> ss.createSheet('Spam') # Create a new sheet at the end of the list of
sheets.
<Sheet sheetId=2032744541, title='Spam', rowCount=1000, columnCount=26>
>>> ss.createSheet('Eggs') # Create another new sheet.
<Sheet sheetId=417452987, title='Eggs', rowCount=1000, columnCount=26>
>>> ss.sheetTitles
('Sheet1', 'Spam', 'Eggs')
>>> ss.createSheet('Bacon', 0) # Create a sheet at index 0 in the list of
sheets.
<Sheet sheetId=814694991, title='Bacon', rowCount=1000, columnCount=26>
>>> ss.sheetTitles
('Bacon', 'Sheet1', 'Spam', 'Eggs')

These instructions add three new sheets to the spreadsheet: “Bacon,”
“Spam,” and “Eggs” (in addition to the default “Sheet1”). The sheets in a
spreadsheet are ordered, and new sheets go to the end of the list unless
you pass a second argument to createSheet() specifying the sheet’s index.
Here, you create the sheet titled “Bacon” at index 0, making “Bacon” the
first sheet in the spreadsheet and displacing the other three sheets by one
position. This is similar to the behavior of the insert() list method.

You can see the new sheets on the tabs at the bottom of the screen, as
shown in Figure 14-7.

Figure 14-7: The “Multiple Sheets” spreadsheet after adding sheets “Spam,”
“Eggs,” and “Bacon”

The Sheet object’s delete() method will delete the sheet from the spread-
sheet. If you want to keep the sheet but delete the data it contains, call the
clear() method to clear all the cells and make it a blank sheet. Enter the fol-
lowing into the interactive shell:

>>> ss.sheetTitles
('Bacon', 'Sheet1', 'Spam', 'Eggs')
>>> ss[0].delete() # Delete the sheet at index 0: the "Bacon" sheet.
>>> ss.sheetTitles
('Sheet1', 'Spam', 'Eggs')

Working with Google Sheets 343

>>> ss['Spam'].delete() # Delete the "Spam" sheet.
>>> ss.sheetTitles
('Sheet1', 'Eggs')
>>> sheet = ss['Eggs'] # Assign a variable to the "Eggs" sheet.
>>> sheet.delete() # Delete the "Eggs" sheet.
>>> ss.sheetTitles
('Sheet1',)
>>> ss[0].clear() # Clear all the cells on the "Sheet1" sheet.
>>> ss.sheetTitles # The "Sheet1" sheet is empty but still exists.
('Sheet1',)

Deleting sheets is permanent; there’s no way to recover the data.
However, you can back up sheets by copying them to another spreadsheet
with the copyTo() method, as explained in the next section.

Copying Sheets
Every Spreadsheet object has an ordered list of the Sheet objects it contains,
and you can use this list to reorder the sheets (as shown in the previous sec-
tion) or copy them to other spreadsheets. To copy a Sheet object to another
Spreadsheet object, call the copyTo() method. Pass it the destination Spreadsheet
object as an argument. To create two spreadsheets and copy the first spread-
sheet’s data to the other sheet, enter the following into the interactive shell:

>>> import ezsheets
>>> ss1 = ezsheets.createSpreadsheet('First Spreadsheet')
>>> ss2 = ezsheets.createSpreadsheet('Second Spreadsheet')
>>> ss1[0]
<Sheet sheetId=0, title='Sheet1', rowCount=1000, columnCount=26>
>>> ss1[0].updateRow(1, ['Some', 'data', 'in', 'the', 'first', 'row'])
>>> ss1[0].copyTo(ss2) # Copy the ss1's Sheet1 to the ss2 spreadsheet.
>>> ss2.sheetTitles # ss2 now contains a copy of ss1's Sheet1.
('Sheet1', 'Copy of Sheet1')

Note that since the destination spreadsheet (ss2 in the previous example)
already had a sheet named Sheet1, the copied sheet will be named Copy of
Sheet1. Copied sheets appear at the end of the list of the destination spread-
sheet’s sheets. If you wish, you can change their index attribute to reorder
them in the new spreadsheet.

Working with Google Sheets Quotas
Because Google Sheets is online, it’s easy to share sheets among multiple
users who can all access the sheets simultaneously. However, this also
means that reading and updating the sheets will be slower than reading
and updating Excel files stored locally on your hard drive. In addition,
Google Sheets has limits on how many read and write operations you
can perform.

According to Google’s developer guidelines, users are restricted
to creating 250 new spreadsheets a day, and free Google accounts can

344 Chapter 14

perform 100 read and 100 write requests per 100 seconds. Attempting to
exceed this quota will raise the googleapiclient.errors.HttpError “Quota
exceeded for quota group” exception. EZSheets will automatically catch
this exception and retry the request. When this happens, the function
calls to read or write data will take several seconds (or even a full minute
or two) before they return. If the request continues to fail (which is pos-
sible if another script using the same credentials is also making requests),
EZSheets will re-raise this exception.

This means that, on occasion, your EZSheets method calls may take
several seconds before they return. If you want to view your API usage or
increase your quota, go to the IAM & Admin Quotas page at https://console
.developers.google.com/quotas/ to learn about paying for increased usage. If
you’d rather just deal with the HttpError exceptions yourself, you can set
ezsheets.IGNORE_QUOTA to True, and EZSheet’s methods will raise these excep-
tions when it encounters them.

Summary
Google Sheets is a popular online spreadsheet application that runs in
your browser. Using the EZSheets third-party module, you can download,
create, read, and modify spreadsheets. EZSheets represents spreadsheets as
Spreadsheet objects, each of which contains an ordered list of Sheet objects.
Each sheet has columns and rows of data that you can read and update in
several ways.

While Google Sheets makes sharing data and cooperative editing easy,
its main disadvantage is speed: you must update spreadsheets with web
requests, which can take a few seconds to execute. But for most purposes,
this speed restriction won’t affect Python scripts using EZSheets. Google
Sheets also limits how often you can make changes.

For complete documentation of EZSheet’s features, visit https://ezsheets
.readthedocs.io/.

Practice Questions

1.	 What three files do you need for EZSheets to access Google Sheets?

2.	 What two types of objects does EZSheets have?

3.	 How can you create an Excel file from a Google Sheet spreadsheet?

4.	 How can you create a Google Sheet spreadsheet from an Excel file?

5.	 The ss variable contains a Spreadsheet object. What code will read data
from the cell B2 in a sheet titled “Students”?

6.	 How can you find the column letters for column 999?

7.	 How can you find out how many rows and columns a sheet has?

8.	 How do you delete a spreadsheet? Is this deletion permanent?

https://console.developers.google.com/quotas/
https://console.developers.google.com/quotas/
https://ezsheets.readthedocs.io/
https://ezsheets.readthedocs.io/

Working with Google Sheets 345

9.	 What functions will create a new Spreadsheet object and a new Sheet
object, respectively?

10.	 What will happen if, by making frequent read and write requests with
EZSheets, you exceed your Google account’s quota?

Practice Projects
For practice, write programs to do the following tasks.

Downloading Google Forms Data
Google Forms allows you to create simple online forms that make it easy
to collect information from people. The information they enter into the
form is stored in a Google Sheet. For this project, write a program that can
automatically download the form information that users have submitted.
Go to https://docs.google.com/forms/ and start a new form; it will be blank.
Add fields to the form that ask the user for a name and email address. Then
click the Send button in the upper right to get a link to your new form,
such as https://goo.gl/forms/QZsq5sC2Qe4fYO592/. Try to enter a few example
responses into this form.

On the “Responses” tab of your form, click the green Create
Spreadsheet button to create a Google Sheets spreadsheet that will hold the
responses that users submit. You should see your example responses in the
first rows of this spreadsheet. Then write a Python script using EZSheets to
collect a list of the email addresses on this spreadsheet.

Converting Spreadsheets to Other Formats
You can use Google Sheets to convert a spreadsheet file into other formats.
Write a script that passes a submitted file to upload(). Once the spread-
sheet has uploaded to Google Sheets, download it using downloadAsExcel(),
downloadAsODS(), and other such functions to create a copy of the spreadsheet
in these other formats.

Finding Mistakes in a Spreadsheet
After a long day at the bean-counting office, I’ve finished a spreadsheet
with all the bean totals and uploaded them to Google Sheets. The spread-
sheet is publicly viewable (but not editable). You can get this spreadsheet
with the following code:

>>> import ezsheets
>>> ss = ezsheets.Spreadsheet('1jDZEdvSIh4TmZxccyy0ZXrH-ELlrwq8_YYiZrEOB4jg')

You can look at this spreadsheet in your browser by going to https://docs​
.google.com/spreadsheets/d/1jDZEdvSIh4TmZxccyy0ZXrH-ELlrwq8_YYiZrEOB4jg​
/edit?usp=sharing/. The columns of the first sheet in this spreadsheet are
“Beans per Jar,” “Jars,” and “Total Beans.” The “Total Beans” column is

https://docs.google.com/spreadsheets/d/1jDZEdvSIh4TmZxccyy0ZXrH-ELlrwq8_YYiZrEOB4jg/edit?usp=shari
https://docs.google.com/spreadsheets/d/1jDZEdvSIh4TmZxccyy0ZXrH-ELlrwq8_YYiZrEOB4jg/edit?usp=shari
https://docs.google.com/spreadsheets/d/1jDZEdvSIh4TmZxccyy0ZXrH-ELlrwq8_YYiZrEOB4jg/edit?usp=shari

346 Chapter 14

the product of the numbers in the “Beans per Jar” and “Jars” columns.
However, there is a mistake in one of the 15,000 rows in this sheet. That’s
too many rows to check by hand. Luckily, you can write a script that checks
the totals.

As a hint, you can access the individual cells in a row with ss[0].getRow​
(rowNum), where ss is the Spreadsheet object and rowNum is the row number.
Remember that row numbers in Google Sheets begin at 1, not 0. The cell
values will be strings, so you’ll need to convert them to integers so your
program can work with them. The expression int(ss[0].getRow(2)[0]) *
int(ss[0].getRow(2)[1]) == int(ss[0].getRow(2)[2]) evaluates to True if the
row has the correct total. Put this code in a loop to identify which row in
the sheet has the incorrect total.

15
W O R K I N G W I T H P D F A N D

W O R D D O C U M E N T S

PDF and Word documents are binary files,
which makes them much more complex

than plaintext files. In addition to text, they
store lots of font, color, and layout information.

If you want your programs to read or write to PDFs or
Word documents, you’ll need to do more than simply
pass their filenames to open().

Fortunately, there are Python modules that make it easy for you to
interact with PDFs and Word documents. This chapter will cover two such
modules: PyPDF2 and Python-Docx.

PDF Documents
PDF stands for Portable Document Format and uses the .pdf file extension.
Although PDFs support many features, this chapter will focus on the two
things you’ll be doing most often with them: reading text content from
PDFs and crafting new PDFs from existing documents.

348 Chapter 15

The module you’ll use to work with PDFs is PyPDF2 version 1.26.0. It’s
important that you install this version because future versions of PyPDF2
may be incompatible with the code. To install it, run pip install --user
PyPDF2==1.26.0 from the command line. This module name is case sensitive,
so make sure the y is lowercase and everything else is uppercase. (Check
out Appendix A for full details about installing third-party modules.) If the
module was installed correctly, running import PyPDF2 in the interactive shell
shouldn’t display any errors.

T HE PROBL E M AT IC PDF FOR M AT

While PDF files are great for laying out text in a way that’s easy for people to
print and read, they’re not straightforward for software to parse into plaintext.
As a result, PyPDF2 might make mistakes when extracting text from a PDF and
may even be unable to open some PDFs at all. There isn’t much you can do
about this, unfortunately. PyPDF2 may simply be unable to work with some
of your particular PDF files. That said, I haven’t found any PDF files so far that
can’t be opened with PyPDF2.

Extracting Text from PDFs
PyPDF2 does not have a way to extract images, charts, or other media from
PDF documents, but it can extract text and return it as a Python string. To
start learning how PyPDF2 works, we’ll use it on the example PDF shown
in Figure 15-1.

Figure 15-1: The PDF page that we will be
extracting text from

Working with PDF and Word Documents 349

Download this PDF from https://nostarch.com/automatestuff2/ and enter
the following into the interactive shell:

>>> import PyPDF2
>>> pdfFileObj = open('meetingminutes.pdf', 'rb')
>>> pdfReader = PyPDF2.PdfFileReader(pdfFileObj)

 >>> pdfReader.numPages
19

 >>> pageObj = pdfReader.getPage(0)
 >>> pageObj.extractText()

'OOFFFFIICCIIAALL BBOOAARRDD MMIINNUUTTEESS Meeting of March 7,
2015 \n The Board of Elementary and Secondary Education shall
provide leadership and create policies for education that expand opportunities
for children, empower families and communities, and advance Louisiana in an
increasingly competitive global market. BOARD of ELEMENTARY and SECONDARY
EDUCATION '
>>> pdfFileObj.close()

First, import the PyPDF2 module. Then open meetingminutes.pdf in read
binary mode and store it in pdfFileObj. To get a PdfFileReader object that rep-
resents this PDF, call PyPDF2.PdfFileReader() and pass it pdfFileObj. Store this
PdfFileReader object in pdfReader.

The total number of pages in the document is stored in the numPages
attribute of a PdfFileReader object . The example PDF has 19 pages, but
let’s extract text from only the first page.

To extract text from a page, you need to get a Page object, which repre-
sents a single page of a PDF, from a PdfFileReader object. You can get a Page
object by calling the getPage() method  on a PdfFileReader object and pass-
ing it the page number of the page you’re interested in—in our case, 0.

PyPDF2 uses a zero-based index for getting pages: The first page is page 0,
the second is page 1, and so on. This is always the case, even if pages are
numbered differently within the document. For example, say your PDF is
a three-page excerpt from a longer report, and its pages are numbered 42,
43, and 44. To get the first page of this document, you would want to call
pdfReader.getPage(0), not getPage(42) or getPage(1).

Once you have your Page object, call its extractText() method to return a
string of the page’s text . The text extraction isn’t perfect: The text Charles
E. “Chas” Roemer, President from the PDF is absent from the string returned
by extractText(), and the spacing is sometimes off. Still, this approximation
of the PDF text content may be good enough for your program.

Decrypting PDFs
Some PDF documents have an encryption feature that will keep them from
being read until whoever is opening the document provides a password.
Enter the following into the interactive shell with the PDF you downloaded,
which has been encrypted with the password rosebud:

>>> import PyPDF2
>>> pdfReader = PyPDF2.PdfFileReader(open('encrypted.pdf', 'rb'))

350 Chapter 15

 >>> pdfReader.isEncrypted
True
>>> pdfReader.getPage(0)

 Traceback (most recent call last):
 File "<pyshell#173>", line 1, in <module>
 pdfReader.getPage()
 --snip--
 File "C:\Python34\lib\site-packages\PyPDF2\pdf.py", line 1173, in getObject
 raise utils.PdfReadError("file has not been decrypted")
PyPDF2.utils.PdfReadError: file has not been decrypted

>>> pdfReader = PyPDF2.PdfFileReader(open('encrypted.pdf', 'rb'))
 >>> pdfReader.decrypt('rosebud')

1
>>> pageObj = pdfReader.getPage(0)

All PdfFileReader objects have an isEncrypted attribute that is True if the
PDF is encrypted and False if it isn’t . Any attempt to call a function that
reads the file before it has been decrypted with the correct password will
result in an error .

N O T E 	 Due to a bug in PyPDF2 version 1.26.0, calling getPage() on an encrypted PDF
before calling decrypt() on it causes future getPage() calls to fail with the following
error: IndexError: list index out of range. This is why our example reopened the
file with a new PdfFileReader object.

To read an encrypted PDF, call the decrypt() function and pass the pass-
word as a string . After you call decrypt() with the correct password, you’ll
see that calling getPage() no longer causes an error. If given the wrong pass-
word, the decrypt() function will return 0 and getPage() will continue to fail.
Note that the decrypt() method decrypts only the PdfFileReader object, not
the actual PDF file. After your program terminates, the file on your hard
drive remains encrypted. Your program will have to call decrypt() again
the next time it is run.

Creating PDFs
PyPDF2’s counterpart to PdfFileReader is PdfFileWriter, which can create
new PDF files. But PyPDF2 cannot write arbitrary text to a PDF like Python
can do with plaintext files. Instead, PyPDF2’s PDF-writing capabilities are
limited to copying pages from other PDFs, rotating pages, overlaying pages,
and encrypting files.

PyPDF2 doesn’t allow you to directly edit a PDF. Instead, you have to
create a new PDF and then copy content over from an existing document.
The examples in this section will follow this general approach:

1.	 Open one or more existing PDFs (the source PDFs) into PdfFileReader
objects.

2.	 Create a new PdfFileWriter object.

Working with PDF and Word Documents 351

3.	 Copy pages from the PdfFileReader objects into the PdfFileWriter object.

4.	 Finally, use the PdfFileWriter object to write the output PDF.

Creating a PdfFileWriter object creates only a value that represents a
PDF document in Python. It doesn’t create the actual PDF file. For that,
you must call the PdfFileWriter’s write() method.

The write() method takes a regular File object that has been opened in
write-binary mode. You can get such a File object by calling Python’s open()
function with two arguments: the string of what you want the PDF’s filename
to be and 'wb' to indicate the file should be opened in write-binary mode.

If this sounds a little confusing, don’t worry—you’ll see how this works
in the following code examples.

Copying Pages

You can use PyPDF2 to copy pages from one PDF document to another.
This allows you to combine multiple PDF files, cut unwanted pages, or
reorder pages.

Download meetingminutes.pdf and meetingminutes2.pdf from https://nostarch
.com/automatestuff2/ and place the PDFs in the current working directory.
Enter the following into the interactive shell:

>>> import PyPDF2
>>> pdf1File = open('meetingminutes.pdf', 'rb')
>>> pdf2File = open('meetingminutes2.pdf', 'rb')

 >>> pdf1Reader = PyPDF2.PdfFileReader(pdf1File)
 >>> pdf2Reader = PyPDF2.PdfFileReader(pdf2File)
 >>> pdfWriter = PyPDF2.PdfFileWriter()

>>> for pageNum in range(pdf1Reader.numPages):
  pageObj = pdf1Reader.getPage(pageNum)
  pdfWriter.addPage(pageObj)

>>> for pageNum in range(pdf2Reader.numPages):
  pageObj = pdf2Reader.getPage(pageNum)
  pdfWriter.addPage(pageObj)

 >>> pdfOutputFile = open('combinedminutes.pdf', 'wb')
>>> pdfWriter.write(pdfOutputFile)
>>> pdfOutputFile.close()
>>> pdf1File.close()
>>> pdf2File.close()

Open both PDF files in read binary mode and store the two resulting File
objects in pdf1File and pdf2File. Call PyPDF2.PdfFileReader() and pass it pdf1File
to get a PdfFileReader object for meetingminutes.pdf . Call it again and pass it
pdf2File to get a PdfFileReader object for meetingminutes2.pdf . Then create a
new PdfFileWriter object, which represents a blank PDF document .

http://autbor.com/meetingminutes.pdf
http://autbor.com/meetingminutes.pdf
http://autbor.com/meetingminutes2.pdf
https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/

352 Chapter 15

Next, copy all the pages from the two source PDFs and add them
to the PdfFileWriter object. Get the Page object by calling getPage() on a
PdfFileReader object . Then pass that Page object to your PdfFileWriter’s
addPage() method . These steps are done first for pdf1Reader and then
again for pdf2Reader. When you’re done copying pages, write a new PDF
called combinedminutes.pdf by passing a File object to the PdfFileWriter’s
write() method .

N O T E 	 PyPDF2 cannot insert pages in the middle of a PdfFileWriter object; the addPage()
method will only add pages to the end.

You have now created a new PDF file that combines the pages from
meetingminutes.pdf and meetingminutes2.pdf into a single document. Remember
that the File object passed to PyPDF2.PdfFileReader() needs to be opened in
read-binary mode by passing 'rb' as the second argument to open(). Likewise,
the File object passed to PyPDF2.PdfFileWriter() needs to be opened in write-
binary mode with 'wb'.

Rotating Pages

The pages of a PDF can also be rotated in 90-degree increments with the
rotateClockwise() and rotateCounterClockwise() methods. Pass one of the inte-
gers 90, 180, or 270 to these methods. Enter the following into the interactive
shell, with the meetingminutes.pdf file in the current working directory:

>>> import PyPDF2
>>> minutesFile = open('meetingminutes.pdf', 'rb')
>>> pdfReader = PyPDF2.PdfFileReader(minutesFile)

 >>> page = pdfReader.getPage(0)
 >>> page.rotateClockwise(90)

{'/Contents': [IndirectObject(961, 0), IndirectObject(962, 0),
--snip--
}
>>> pdfWriter = PyPDF2.PdfFileWriter()
>>> pdfWriter.addPage(page)

 >>> resultPdfFile = open('rotatedPage.pdf', 'wb')
>>> pdfWriter.write(resultPdfFile)
>>> resultPdfFile.close()
>>> minutesFile.close()

Here we use getPage(0) to select the first page of the PDF , and then
we call rotateClockwise(90) on that page . We write a new PDF with the
rotated page and save it as rotatedPage.pdf .

The resulting PDF will have one page, rotated 90 degrees clockwise,
as shown in Figure 15-2. The return values from rotateClockwise() and
rotateCounterClockwise() contain a lot of information that you can ignore.

Working with PDF and Word Documents 353

Figure 15-2: The rotatedPage.pdf file with the page
rotated 90 degrees clockwise

Overlaying Pages

PyPDF2 can also overlay the contents of one page over another, which is useful
for adding a logo, timestamp, or watermark to a page. With Python, it’s easy to
add watermarks to multiple files and only to pages your program specifies.

Download watermark.pdf from https://nostarch.com/automatestuff2/ and
place the PDF in the current working directory along with meetingminutes.pdf.
Then enter the following into the interactive shell:

>>> import PyPDF2
>>> minutesFile = open('meetingminutes.pdf', 'rb')

 >>> pdfReader = PyPDF2.PdfFileReader(minutesFile)
 >>> minutesFirstPage = pdfReader.getPage(0)
 >>> pdfWatermarkReader = PyPDF2.PdfFileReader(open('watermark.pdf', 'rb'))
 >>> minutesFirstPage.mergePage(pdfWatermarkReader.getPage(0))
 >>> pdfWriter = PyPDF2.PdfFileWriter()
 >>> pdfWriter.addPage(minutesFirstPage)

 >>> for pageNum in range(1, pdfReader.numPages):
 pageObj = pdfReader.getPage(pageNum)
 pdfWriter.addPage(pageObj)

>>> resultPdfFile = open('watermarkedCover.pdf', 'wb')
>>> pdfWriter.write(resultPdfFile)
>>> minutesFile.close()
>>> resultPdfFile.close()

354 Chapter 15

Here we make a PdfFileReader object of meetingminutes.pdf . We call
getPage(0) to get a Page object for the first page and store this object in
minutesFirstPage . We then make a PdfFileReader object for watermark​
.pdf  and call mergePage() on minutesFirstPage . The argument we pass
to mergePage() is a Page object for the first page of watermark.pdf.

Now that we’ve called mergePage() on minutesFirstPage, minutesFirstPage
represents the watermarked first page. We make a PdfFileWriter object 
and add the watermarked first page . Then we loop through the rest of
the pages in meetingminutes.pdf and add them to the PdfFileWriter object .
Finally, we open a new PDF called watermarkedCover.pdf and write the con-
tents of the PdfFileWriter to the new PDF.

Figure 15-3 shows the results. Our new PDF, watermarkedCover.pdf, has
all the contents of the meetingminutes.pdf, and the first page is watermarked.

Figure 15-3: The original PDF (left), the watermark PDF (center), and the merged PDF (right)

Encrypting PDFs

A PdfFileWriter object can also add encryption to a PDF document. Enter
the following into the interactive shell:

>>> import PyPDF2
>>> pdfFile = open('meetingminutes.pdf', 'rb')
>>> pdfReader = PyPDF2.PdfFileReader(pdfFile)
>>> pdfWriter = PyPDF2.PdfFileWriter()
>>> for pageNum in range(pdfReader.numPages):
 pdfWriter.addPage(pdfReader.getPage(pageNum))

 >>> pdfWriter.encrypt('swordfish')
>>> resultPdf = open('encryptedminutes.pdf', 'wb')
>>> pdfWriter.write(resultPdf)
>>> resultPdf.close()

Before calling the write() method to save to a file, call the encrypt()
method and pass it a password string . PDFs can have a user password
(allowing you to view the PDF) and an owner password (allowing you to set
permissions for printing, commenting, extracting text, and other features).
The user password and owner password are the first and second arguments

Working with PDF and Word Documents 355

to encrypt(), respectively. If only one string argument is passed to encrypt(),
it will be used for both passwords.

In this example, we copied the pages of meetingminutes.pdf to a
PdfFileWriter object. We encrypted the PdfFileWriter with the password
swordfish, opened a new PDF called encryptedminutes.pdf, and wrote the
contents of the PdfFileWriter to the new PDF. Before anyone can view
encryptedminutes.pdf, they’ll have to enter this password. You may want to
delete the original, unencrypted meetingminutes.pdf file after ensuring its
copy was correctly encrypted.

Project: Combining Select Pages from Many PDFs
Say you have the boring job of merging several dozen PDF documents into
a single PDF file. Each of them has a cover sheet as the first page, but you
don’t want the cover sheet repeated in the final result. Even though there
are lots of free programs for combining PDFs, many of them simply merge
entire files together. Let’s write a Python program to customize which pages
you want in the combined PDF.

At a high level, here’s what the program will do:

1.	 Find all PDF files in the current working directory.

2.	 Sort the filenames so the PDFs are added in order.

3.	 Write each page, excluding the first page, of each PDF to the output file.

In terms of implementation, your code will need to do the following:

1.	 Call os.listdir() to find all the files in the working directory and
remove any non-PDF files.

2.	 Call Python’s sort() list method to alphabetize the filenames.

3.	 Create a PdfFileWriter object for the output PDF.

4.	 Loop over each PDF file, creating a PdfFileReader object for it.

5.	 Loop over each page (except the first) in each PDF file.

6.	 Add the pages to the output PDF.

7.	 Write the output PDF to a file named allminutes.pdf.

For this project, open a new file editor tab and save it as combinePdfs.py.

Step 1: Find All PDF Files
First, your program needs to get a list of all files with the .pdf extension
in the current working directory and sort them. Make your code look like
the following:

#! python3
combinePdfs.py - Combines all the PDFs in the current working directory into
into a single PDF.

 import PyPDF2, os

356 Chapter 15

Get all the PDF filenames.
pdfFiles = []
for filename in os.listdir('.'):
 if filename.endswith('.pdf'):

  pdfFiles.append(filename)
 pdfFiles.sort(key = str.lower)

 pdfWriter = PyPDF2.PdfFileWriter()

TODO: Loop through all the PDF files.

TODO: Loop through all the pages (except the first) and add them.

TODO: Save the resulting PDF to a file.

After the shebang line and the descriptive comment about what
the program does, this code imports the os and PyPDF2 modules . The
os.listdir('.') call will return a list of every file in the current working
directory. The code loops over this list and adds only those files with the
.pdf extension to pdfFiles . Afterward, this list is sorted in alphabetical
order with the key = str.lower keyword argument to sort() .

A PdfFileWriter object is created to hold the combined PDF pages .
Finally, a few comments outline the rest of the program.

Step 2: Open Each PDF
Now the program must read each PDF file in pdfFiles. Add the following to
your program:

#! python3
combinePdfs.py - Combines all the PDFs in the current working directory into
a single PDF.

import PyPDF2, os

Get all the PDF filenames.
pdfFiles = []
--snip--

Loop through all the PDF files.
for filename in pdfFiles:
 pdfFileObj = open(filename, 'rb')
 pdfReader = PyPDF2.PdfFileReader(pdfFileObj)
 # TODO: Loop through all the pages (except the first) and add them.

TODO: Save the resulting PDF to a file.

For each PDF, the loop opens a filename in read-binary mode by call-
ing open() with 'rb' as the second argument. The open() call returns a File
object, which gets passed to PyPDF2.PdfFileReader() to create a PdfFileReader
object for that PDF file.

Working with PDF and Word Documents 357

Step 3: Add Each Page
For each PDF, you’ll want to loop over every page except the first. Add this
code to your program:

#! python3
combinePdfs.py - Combines all the PDFs in the current working directory into
a single PDF.

import PyPDF2, os

--snip--

Loop through all the PDF files.
for filename in pdfFiles:
--snip--
 # Loop through all the pages (except the first) and add them.

  for pageNum in range(1, pdfReader.numPages):
 pageObj = pdfReader.getPage(pageNum)
 pdfWriter.addPage(pageObj)

TODO: Save the resulting PDF to a file.

The code inside the for loop copies each Page object individually to
the PdfFileWriter object. Remember, you want to skip the first page. Since
PyPDF2 considers 0 to be the first page, your loop should start at 1  and
then go up to, but not include, the integer in pdfReader.numPages.

Step 4: Save the Results
After these nested for loops are done looping, the pdfWriter variable will
contain a PdfFileWriter object with the pages for all the PDFs combined.
The last step is to write this content to a file on the hard drive. Add this
code to your program:

#! python3
combinePdfs.py - Combines all the PDFs in the current working directory into
a single PDF.

import PyPDF2, os

--snip--

Loop through all the PDF files.
for filename in pdfFiles:
--snip--
 # Loop through all the pages (except the first) and add them.

 for pageNum in range(1, pdfReader.numPages):
 --snip--

Save the resulting PDF to a file.
pdfOutput = open('allminutes.pdf', 'wb')

358 Chapter 15

pdfWriter.write(pdfOutput)
pdfOutput.close()

Passing 'wb' to open() opens the output PDF file, allminutes.pdf, in write-
binary mode. Then, passing the resulting File object to the write() method
creates the actual PDF file. A call to the close() method finishes the program.

Ideas for Similar Programs
Being able to create PDFs from the pages of other PDFs will let you make
programs that can do the following:

•	 Cut out specific pages from PDFs.

•	 Reorder pages in a PDF.

•	 Create a PDF from only those pages that have some specific text,
identified by extractText().

Word Documents
Python can create and modify Word documents, which have the .docx file
extension, with the docx module. You can install the module by running pip
install --user -U python-docx==0.8.10. (Appendix A has full details on install-
ing third-party modules.)

N O T E 	 When using pip to first install Python-Docx, be sure to install python-docx, not
docx. The package name docx is for a different module that this book does not cover.
However, when you are going to import the module from the python-docx package,
you’ll need to run import docx, not import python-docx.

If you don’t have Word, LibreOffice Writer and OpenOffice Writer are
free alternative applications for Windows, macOS, and Linux that can be
used to open .docx files. You can download them from https://www.libreoffice​
.org/ and https://openoffice.org/, respectively. The full documentation for
Python-Docx is available at https://python-docx.readthedocs.io/. Although there
is a version of Word for macOS, this chapter will focus on Word for Windows.

Compared to plaintext, .docx files have a lot of structure. This structure
is represented by three different data types in Python-Docx. At the highest
level, a Document object represents the entire document. The Document object
contains a list of Paragraph objects for the paragraphs in the document. (A
new paragraph begins whenever the user presses enter or return while
typing in a Word document.) Each of these Paragraph objects contains a list
of one or more Run objects. The single-sentence paragraph in Figure 15-4
has four runs.

A plain paragraph with some bold and some italic
Run Run RunRun

Figure 15-4: The Run objects identified in a Paragraph object

https://www.libreoffice.org/
https://www.libreoffice.org/

Working with PDF and Word Documents 359

The text in a Word document is more than just a string. It has font, size,
color, and other styling information associated with it. A style in Word is a
collection of these attributes. A Run object is a contiguous run of text with
the same style. A new Run object is needed whenever the text style changes.

Reading Word Documents
Let’s experiment with the docx module. Download demo.docx from https://
nostarch.com/automatestuff2/ and save the document to the working direc-
tory. Then enter the following into the interactive shell:

>>> import docx
 >>> doc = docx.Document('demo.docx')
 >>> len(doc.paragraphs)

7
 >>> doc.paragraphs[0].text

'Document Title'
 >>> doc.paragraphs[1].text

'A plain paragraph with some bold and some italic'
 >>> len(doc.paragraphs[1].runs)

4
 >>> doc.paragraphs[1].runs[0].text

'A plain paragraph with some '
 >>> doc.paragraphs[1].runs[1].text

'bold'
 >>> doc.paragraphs[1].runs[2].text

' and some '
 >>> doc.paragraphs[1].runs[3].text

'italic'

At , we open a .docx file in Python, call docx.Document(), and pass
the filename demo.docx. This will return a Document object, which has a
paragraphs attribute that is a list of Paragraph objects. When we call len()
on doc.paragraphs, it returns 7, which tells us that there are seven Paragraph
objects in this document . Each of these Paragraph objects has a text
attribute that contains a string of the text in that paragraph (without the
style information). Here, the first text attribute contains 'DocumentTitle' ,
and the second contains 'A plain paragraph with some bold and some italic' .

Each Paragraph object also has a runs attribute that is a list of Run objects.
Run objects also have a text attribute, containing just the text in that par-
ticular run. Let’s look at the text attributes in the second Paragraph object,
'A plain paragraph with some bold and some italic'. Calling len() on this
Paragraph object tells us that there are four Run objects . The first run
object contains 'A plain paragraph with some ' . Then, the text changes
to a bold style, so 'bold' starts a new Run object . The text returns to an
unbolded style after that, which results in a third Run object, ' and some ' .
Finally, the fourth and last Run object contains 'italic' in an italic style .

With Python-Docx, your Python programs will now be able to read the
text from a .docx file and use it just like any other string value.

360 Chapter 15

Getting the Full Text from a .docx File
If you care only about the text, not the styling information, in the Word
document, you can use the getText() function. It accepts a filename of a
.docx file and returns a single string value of its text. Open a new file editor
tab and enter the following code, saving it as readDocx.py:

#! python3

import docx

def getText(filename):
 doc = docx.Document(filename)
 fullText = []
 for para in doc.paragraphs:
 fullText.append(para.text)
 return '\n'.join(fullText)

The getText() function opens the Word document, loops over all the
Paragraph objects in the paragraphs list, and then appends their text to the list
in fullText. After the loop, the strings in fullText are joined together with
newline characters.

The readDocx.py program can be imported like any other module. Now if
you just need the text from a Word document, you can enter the following:

>>> import readDocx
>>> print(readDocx.getText('demo.docx'))
Document Title
A plain paragraph with some bold and some italic
Heading, level 1
Intense quote
first item in unordered list
first item in ordered list

You can also adjust getText() to modify the string before returning
it. For example, to indent each paragraph, replace the append() call in
readDocx.py with this:

fullText.append(' ' + para.text)

To add a double space between paragraphs, change the join() call
code to this:

return '\n\n'.join(fullText)

As you can see, it takes only a few lines of code to write functions that
will read a .docx file and return a string of its content to your liking.

Working with PDF and Word Documents 361

Styling Paragraph and Run Objects
In Word for Windows, you can see the styles by pressing ctrl-alt-shift-S to
display the Styles pane, which looks like Figure 15-5. On macOS, you can
view the Styles pane by clicking the View4Styles menu item.

Figure 15-5: Display the Styles pane by pressing
ctrl-alt-shift-S on Windows.

Word and other word processors use styles to keep the visual presenta-
tion of similar types of text consistent and easy to change. For example,
perhaps you want to set body paragraphs in 11-point, Times New Roman,
left-justified, ragged-right text. You can create a style with these settings and
assign it to all body paragraphs. Then, if you later want to change the pre-
sentation of all body paragraphs in the document, you can just change the
style, and all those paragraphs will be automatically updated.

For Word documents, there are three types of styles: paragraph styles can
be applied to Paragraph objects, character styles can be applied to Run objects,
and linked styles can be applied to both kinds of objects. You can give both
Paragraph and Run objects styles by setting their style attribute to a string.
This string should be the name of a style. If style is set to None, then there
will be no style associated with the Paragraph or Run object.

The string values for the default Word styles are as follows:

'Normal'
'Body Text'
'Body Text 2'
'Body Text 3'
'Caption'
'Heading 1'
'Heading 2'
'Heading 3'
'Heading 4'

'Heading 5'
'Heading 6'
'Heading 7'
'Heading 8'
'Heading 9'
'Intense Quote'
'List'
'List 2'
'List 3'

'List Bullet'
'List Bullet 2'
'List Bullet 3'
'List Continue'
'List Continue 2'
'List Continue 3'
'List Number '
'List Number 2'
'List Number 3'

'List Paragraph'
'MacroText'
'No Spacing'
'Quote'
'Subtitle'
'TOC Heading'
'Title'

362 Chapter 15

When using a linked style for a Run object, you will need to add ' Char'
to the end of its name. For example, to set the Quote linked style for a
Paragraph object, you would use paragraphObj.style = 'Quote', but for a Run
object, you would use runObj.style = 'Quote Char'.

In the current version of Python-Docx (0.8.10), the only styles that can
be used are the default Word styles and the styles in the opened .docx. New
styles cannot be created—though this may change in future versions of
Python-Docx.

Creating Word Documents with Nondefault Styles
If you want to create Word documents that use styles beyond the default
ones, you will need to open Word to a blank Word document and create the
styles yourself by clicking the New Style button at the bottom of the Styles
pane (Figure 15-6 shows this on Windows).

This will open the Create New Style from Formatting dialog, where you
can enter the new style. Then, go back into the interactive shell and open
this blank Word document with docx.Document(), using it as the base for your
Word document. The name you gave this style will now be available to use
with Python-Docx.

Figure 15-6: The New Style button (left) and the Create New Style from Formatting
dialog (right)

Run Attributes
Runs can be further styled using text attributes. Each attribute can be set
to one of three values: True (the attribute is always enabled, no matter what
other styles are applied to the run), False (the attribute is always disabled),
or None (defaults to whatever the run’s style is set to).

Table 15-1 lists the text attributes that can be set on Run objects.

Working with PDF and Word Documents 363

Table 15-1: Run Object text Attributes

Attribute Description

bold The text appears in bold.
italic The text appears in italic.
underline The text is underlined.
strike The text appears with strikethrough.
double_strike The text appears with double strikethrough.
all_caps The text appears in capital letters.
small_caps The text appears in capital letters, with lowercase

letters two points smaller.
shadow The text appears with a shadow.
outline The text appears outlined rather than solid.
rtl The text is written right-to-left.
imprint The text appears pressed into the page.
emboss The text appears raised off the page in relief.

For example, to change the styles of demo.docx, enter the following into
the interactive shell:

>>> import docx
>>> doc = docx.Document('demo.docx')
>>> doc.paragraphs[0].text
'Document Title'
>>> doc.paragraphs[0].style # The exact id may be different:
_ParagraphStyle('Title') id: 3095631007984
>>> doc.paragraphs[0].style = 'Normal'
>>> doc.paragraphs[1].text
'A plain paragraph with some bold and some italic'
>>> (doc.paragraphs[1].runs[0].text, doc.paragraphs[1].runs[1].text, doc.
paragraphs[1].runs[2].text, doc.paragraphs[1].runs[3].text)
('A plain paragraph with some ', 'bold', ' and some ', 'italic')
>>> doc.paragraphs[1].runs[0].style = 'QuoteChar'
>>> doc.paragraphs[1].runs[1].underline = True
>>> doc.paragraphs[1].runs[3].underline = True
>>> doc.save('restyled.docx')

Here, we use the text and style attributes to easily see what’s in the
paragraphs in our document. We can see that it’s simple to divide a para-
graph into runs and access each run individually. So we get the first, sec-
ond, and fourth runs in the second paragraph; style each run; and save the
results to a new document.

The words Document Title at the top of restyled.docx will have the Normal
style instead of the Title style, the Run object for the text A plain paragraph with
some will have the QuoteChar style, and the two Run objects for the words bold

364 Chapter 15

and italic will have their underline attributes set to True. Figure 15-7 shows how
the styles of paragraphs and runs look in restyled.docx.

Figure 15-7: The restyled.docx file

You can find more complete documentation on Python-Docx’s use of
styles at https://python-docx.readthedocs.io/en/latest/user/styles.html.

Writing Word Documents
Enter the following into the interactive shell:

>>> import docx
>>> doc = docx.Document()
>>> doc.add_paragraph('Hello, world!')
<docx.text.Paragraph object at 0x0000000003B56F60>
>>> doc.save('helloworld.docx')

To create your own .docx file, call docx.Document() to return a new, blank
Word Document object. The add_paragraph() document method adds a new
paragraph of text to the document and returns a reference to the Paragraph
object that was added. When you’re done adding text, pass a filename string
to the save() document method to save the Document object to a file.

This will create a file named helloworld.docx in the current working
directory that, when opened, looks like Figure 15-8.

Figure 15-8: The Word document created using add_paragraph('Hello, world!')

Working with PDF and Word Documents 365

You can add paragraphs by calling the add_paragraph() method again
with the new paragraph’s text. Or to add text to the end of an existing para-
graph, you can call the paragraph’s add_run() method and pass it a string.
Enter the following into the interactive shell:

>>> import docx
>>> doc = docx.Document()
>>> doc.add_paragraph('Hello world!')
<docx.text.Paragraph object at 0x000000000366AD30>
>>> paraObj1 = doc.add_paragraph('This is a second paragraph.')
>>> paraObj2 = doc.add_paragraph('This is a yet another paragraph.')
>>> paraObj1.add_run(' This text is being added to the second paragraph.')
<docx.text.Run object at 0x0000000003A2C860>
>>> doc.save('multipleParagraphs.docx')

The resulting document will look like Figure 15-9. Note that the text This
text is being added to the second paragraph. was added to the Paragraph object in
paraObj1, which was the second paragraph added to doc. The add_paragraph()
and add_run() functions return paragraph and Run objects, respectively, to save
you the trouble of extracting them as a separate step.

Keep in mind that as of Python-Docx version 0.8.10, new Paragraph
objects can be added only to the end of the document, and new Run objects
can be added only to the end of a Paragraph object.

The save() method can be called again to save the additional changes
you’ve made.

Figure 15-9: The document with multiple Paragraph and Run objects added

Both add_paragraph() and add_run() accept an optional second argument
that is a string of the Paragraph or Run object’s style. Here’s an example:

>>> doc.add_paragraph('Hello, world!', 'Title')

This line adds a paragraph with the text Hello, world! in the Title style.

366 Chapter 15

Adding Headings
Calling add_heading() adds a paragraph with one of the heading styles. Enter
the following into the interactive shell:

>>> doc = docx.Document()
>>> doc.add_heading('Header 0', 0)
<docx.text.Paragraph object at 0x00000000036CB3C8>
>>> doc.add_heading('Header 1', 1)
<docx.text.Paragraph object at 0x00000000036CB630>
>>> doc.add_heading('Header 2', 2)
<docx.text.Paragraph object at 0x00000000036CB828>
>>> doc.add_heading('Header 3', 3)
<docx.text.Paragraph object at 0x00000000036CB2E8>
>>> doc.add_heading('Header 4', 4)
<docx.text.Paragraph object at 0x00000000036CB3C8>
>>> doc.save('headings.docx')

The arguments to add_heading() are a string of the heading text and
an integer from 0 to 4. The integer 0 makes the heading the Title style,
which is used for the top of the document. Integers 1 to 4 are for various
heading levels, with 1 being the main heading and 4 the lowest subheading.
The add_heading() function returns a Paragraph object to save you the step of
extracting it from the Document object as a separate step.

The resulting headings.docx file will look like Figure 15-10.

Figure 15-10: The headings.docx document with headings 0 to 4

Adding Line and Page Breaks
To add a line break (rather than starting a whole new paragraph), you can
call the add_break() method on the Run object you want to have the break
appear after. If you want to add a page break instead, you need to pass the
value docx.enum.text.WD_BREAK.PAGE as a lone argument to add_break(), as is
done in the middle of the following example:

>>> doc = docx.Document()
>>> doc.add_paragraph('This is on the first page!')
<docx.text.Paragraph object at 0x0000000003785518>

 >>> doc.paragraphs[0].runs[0].add_break(docx.enum.text.WD_BREAK.PAGE)
>>> doc.add_paragraph('This is on the second page!')
<docx.text.Paragraph object at 0x00000000037855F8>
>>> doc.save('twoPage.docx')

Working with PDF and Word Documents 367

This creates a two-page Word document with This is on the first page!
on the first page and This is on the second page! on the second. Even though
there was still plenty of space on the first page after the text This is on the
first page!, we forced the next paragraph to begin on a new page by inserting
a page break after the first run of the first paragraph .

Adding Pictures
Document objects have an add_picture() method that will let you add an image
to the end of the document. Say you have a file zophie.png in the current
working directory. You can add zophie.png to the end of your document
with a width of 1 inch and height of 4 centimeters (Word can use both
imperial and metric units) by entering the following:

>>> doc.add_picture('zophie.png', width=docx.shared.Inches(1),
height=docx.shared.Cm(4))
<docx.shape.InlineShape object at 0x00000000036C7D30>

The first argument is a string of the image’s filename. The optional
width and height keyword arguments will set the width and height of the
image in the document. If left out, the width and height will default to the
normal size of the image.

You’ll probably prefer to specify an image’s height and width in familiar
units such as inches and centimeters, so you can use the docx.shared.Inches()
and docx.shared.Cm() functions when you’re specifying the width and height
keyword arguments.

Creating PDFs from Word Documents
The PyPDF2 module doesn’t allow you to create PDF documents directly,
but there’s a way to generate PDF files with Python if you’re on Windows
and have Microsoft Word installed. You’ll need to install the Pywin32 pack-
age by running pip install --user -U pywin32==224. With this and the docx
module, you can create Word documents and then convert them to PDFs
with the following script.

Open a new file editor tab, enter the following code, and save it as
convertWordToPDF.py:

This script runs on Windows only, and you must have Word installed.
import win32com.client # install with "pip install pywin32==224"
import docx
wordFilename = 'your_word_document.docx'
pdfFilename = 'your_pdf_filename.pdf'

doc = docx.Document()
Code to create Word document goes here.
doc.save(wordFilename)

wdFormatPDF = 17 # Word's numeric code for PDFs.
wordObj = win32com.client.Dispatch('Word.Application')

368 Chapter 15

docObj = wordObj.Documents.Open(wordFilename)
docObj.SaveAs(pdfFilename, FileFormat=wdFormatPDF)
docObj.Close()
wordObj.Quit()

To write a program that produces PDFs with your own content, you
must use the docx module to create a Word document, then use the Pywin32
package’s win32com.client module to convert it to a PDF. Replace the # Code
to create Word document goes here. comment with docx function calls to create
your own content for the PDF in a Word document.

This may seem like a convoluted way to produce PDFs, but as it turns
out, professional software solutions are often just as complicated.

Summary
Text information isn’t just for plaintext files; in fact, it’s pretty likely that
you deal with PDFs and Word documents much more often. You can use
the PyPDF2 module to read and write PDF documents. Unfortunately, read-
ing text from PDF documents might not always result in a perfect transla-
tion to a string because of the complicated PDF file format, and some PDFs
might not be readable at all. In these cases, you’re out of luck unless future
updates to PyPDF2 support additional PDF features.

Word documents are more reliable, and you can read them with the
python-docx package’s docx module. You can manipulate text in Word docu-
ments via Paragraph and Run objects. These objects can also be given styles,
though they must be from the default set of styles or styles already in the
document. You can add new paragraphs, headings, breaks, and pictures to
the document, though only to the end.

Many of the limitations that come with working with PDFs and Word
documents are because these formats are meant to be nicely displayed for
human readers, rather than easy to parse by software. The next chapter
takes a look at two other common formats for storing information: JSON
and CSV files. These formats are designed to be used by computers, and
you’ll see that Python can work with these formats much more easily.

Practice Questions

1.	 A string value of the PDF filename is not passed to the PyPDF2​
.PdfFileReader() function. What do you pass to the function instead?

2.	 What modes do the File objects for PdfFileReader() and PdfFileWriter()
need to be opened in?

3.	 How do you acquire a Page object for page 5 from a PdfFileReader object?

4.	 What PdfFileReader variable stores the number of pages in the PDF
document?

5.	 If a PdfFileReader object’s PDF is encrypted with the password swordfish,
what must you do before you can obtain Page objects from it?

Working with PDF and Word Documents 369

6.	 What methods do you use to rotate a page?

7.	 What method returns a Document object for a file named demo.docx?

8.	 What is the difference between a Paragraph object and a Run object?

9.	 How do you obtain a list of Paragraph objects for a Document object that’s
stored in a variable named doc?

10.	 What type of object has bold, underline, italic, strike, and outline variables?

11.	 What is the difference between setting the bold variable to True, False,
or None?

12.	 How do you create a Document object for a new Word document?

13.	 How do you add a paragraph with the text 'Hello, there!' to a Document
object stored in a variable named doc?

14.	 What integers represent the levels of headings available in Word
documents?

Practice Projects
For practice, write programs that do the following.

PDF Paranoia
Using the os.walk() function from Chapter 10, write a script that will go
through every PDF in a folder (and its subfolders) and encrypt the PDFs
using a password provided on the command line. Save each encrypted PDF
with an _encrypted.pdf suffix added to the original filename. Before deleting
the original file, have the program attempt to read and decrypt the file to
ensure that it was encrypted correctly.

Then, write a program that finds all encrypted PDFs in a folder (and its
subfolders) and creates a decrypted copy of the PDF using a provided pass-
word. If the password is incorrect, the program should print a message to
the user and continue to the next PDF.

Custom Invitations as Word Documents
Say you have a text file of guest names. This guests.txt file has one name per
line, as follows:

Prof. Plum
Miss Scarlet
Col. Mustard
Al Sweigart
RoboCop

Write a program that would generate a Word document with custom
invitations that look like Figure 15-11.

Since Python-Docx can use only those styles that already exist in the
Word document, you will have to first add these styles to a blank Word file
and then open that file with Python-Docx. There should be one invitation

370 Chapter 15

per page in the resulting Word document, so call add_break() to add a page
break after the last paragraph of each invitation. This way, you will need to
open only one Word document to print all of the invitations at once.

Figure 15-11: The Word document generated by your custom invite script

You can download a sample guests.txt file from https://nostarch.com
/automatestuff2/.

Brute-Force PDF Password Breaker
Say you have an encrypted PDF that you have forgotten the password to,
but you remember it was a single English word. Trying to guess your forgot-
ten password is quite a boring task. Instead you can write a program that
will decrypt the PDF by trying every possible English word until it finds one
that works. This is called a brute-force password attack. Download the text file
dictionary.txt from https://nostarch.com/automatestuff2/. This dictionary file con-
tains over 44,000 English words with one word per line.

Using the file-reading skills you learned in Chapter 9, create a list of
word strings by reading this file. Then loop over each word in this list, pass-
ing it to the decrypt() method. If this method returns the integer 0, the pass-
word was wrong and your program should continue to the next password.
If decrypt() returns 1, then your program should break out of the loop and
print the hacked password. You should try both the uppercase and lower-
case form of each word. (On my laptop, going through all 88,000 uppercase
and lowercase words from the dictionary file takes a couple of minutes. This
is why you shouldn’t use a simple English word for your passwords.)

https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/

In Chapter 15, you learned how to extract
text from PDF and Word documents. These

files were in a binary format, which required
special Python modules to access their data.

CSV and JSON files, on the other hand, are just plain-
text files. You can view them in a text editor, such as
Mu. But Python also comes with the special csv and json modules, each pro-
viding functions to help you work with these file formats.

CSV stands for “comma-separated values,” and CSV files are simplified
spreadsheets stored as plaintext files. Python’s csv module makes it easy to
parse CSV files.

JSON (pronounced “JAY-sawn” or “Jason”—it doesn’t matter how because
either way people will say you’re pronouncing it wrong) is a format that stores
information as JavaScript source code in plaintext files. (JSON is short for
JavaScript Object Notation.) You don’t need to know the JavaScript program-
ming language to use JSON files, but the JSON format is useful to know
because it’s used in many web applications.

16
W O R K I N G W I T H C S V F I L E S

A N D J S O N D A T A

372 Chapter 16

The csv Module
Each line in a CSV file represents a row in the spreadsheet, and commas
separate the cells in the row. For example, the spreadsheet example.xlsx from
https://nostarch.com/automatestuff2/ would look like this in a CSV file:

4/5/2015 13:34,Apples,73
4/5/2015 3:41,Cherries,85
4/6/2015 12:46,Pears,14
4/8/2015 8:59,Oranges,52
4/10/2015 2:07,Apples,152
4/10/2015 18:10,Bananas,23
4/10/2015 2:40,Strawberries,98

I will use this file for this chapter’s interactive shell examples. You can
download example.csv from https://nostarch.com/automatestuff2/ or enter the
text into a text editor and save it as example.csv.

CSV files are simple, lacking many of the features of an Excel spread-
sheet. For example, CSV files:

•	 Don’t have types for their values—everything is a string

•	 Don’t have settings for font size or color

•	 Don’t have multiple worksheets

•	 Can’t specify cell widths and heights

•	 Can’t have merged cells

•	 Can’t have images or charts embedded in them

The advantage of CSV files is simplicity. CSV files are widely supported
by many types of programs, can be viewed in text editors (including Mu),
and are a straightforward way to represent spreadsheet data. The CSV for-
mat is exactly as advertised: it’s just a text file of comma-separated values.

Since CSV files are just text files, you might be tempted to read them in
as a string and then process that string using the techniques you learned
in Chapter 9. For example, since each cell in a CSV file is separated by a
comma, maybe you could just call split(',') on each line of text to get
the comma-separated values as a list of strings. But not every comma in a
CSV file represents the boundary between two cells. CSV files also have
their own set of escape characters to allow commas and other characters
to be included as part of the values. The split() method doesn’t handle these
escape characters. Because of these potential pitfalls, you should always
use the csv module for reading and writing CSV files.

http://autbor.com/example.xlsx
http://autbor.com/example.xlsx

Working with CSV Files and JSON Data 373

reader Objects
To read data from a CSV file with the csv module, you need to create a
reader object. A reader object lets you iterate over lines in the CSV file.
Enter the following into the interactive shell, with example.csv in the
current working directory:

 >>> import csv
 >>> exampleFile = open('example.csv')
 >>> exampleReader = csv.reader(exampleFile)
 >>> exampleData = list(exampleReader)
 >>> exampleData

[['4/5/2015 13:34', 'Apples', '73'], ['4/5/2015 3:41', 'Cherries', '85'],
['4/6/2015 12:46', 'Pears', '14'], ['4/8/2015 8:59', 'Oranges', '52'],
['4/10/2015 2:07', 'Apples', '152'], ['4/10/2015 18:10', 'Bananas', '23'],
['4/10/2015 2:40', 'Strawberries', '98']]

The csv module comes with Python, so we can import it  without
having to install it first.

To read a CSV file with the csv module, first open it using the open() func-
tion , just as you would any other text file. But instead of calling the read()
or readlines() method on the File object that open() returns, pass it to the
csv.reader() function . This will return a reader object for you to use. Note
that you don’t pass a filename string directly to the csv.reader() function.

The most direct way to access the values in the reader object is to con-
vert it to a plain Python list by passing it to list() . Using list() on this
reader object returns a list of lists, which you can store in a variable like
exampleData. Entering exampleData in the shell displays the list of lists .

Now that you have the CSV file as a list of lists, you can access the value at
a particular row and column with the expression exampleData[row][col], where
row is the index of one of the lists in exampleData, and col is the index of the
item you want from that list. Enter the following into the interactive shell:

>>> exampleData[0][0]
'4/5/2015 13:34'
>>> exampleData[0][1]
'Apples'
>>> exampleData[0][2]
'73'
>>> exampleData[1][1]
'Cherries'
>>> exampleData[6][1]
'Strawberries'

As you can see from the output, exampleData[0][0] goes into the first list
and gives us the first string, exampleData[0][2] goes into the first list and gives
us the third string, and so on.

374 Chapter 16

Reading Data from reader Objects in a for Loop
For large CSV files, you’ll want to use the reader object in a for loop. This
avoids loading the entire file into memory at once. For example, enter the
following into the interactive shell:

>>> import csv
>>> exampleFile = open('example.csv')
>>> exampleReader = csv.reader(exampleFile)
>>> for row in exampleReader:
 print('Row #' + str(exampleReader.line_num) + ' ' + str(row))

Row #1 ['4/5/2015 13:34', 'Apples', '73']
Row #2 ['4/5/2015 3:41', 'Cherries', '85']
Row #3 ['4/6/2015 12:46', 'Pears', '14']
Row #4 ['4/8/2015 8:59', 'Oranges', '52']
Row #5 ['4/10/2015 2:07', 'Apples', '152']
Row #6 ['4/10/2015 18:10', 'Bananas', '23']
Row #7 ['4/10/2015 2:40', 'Strawberries', '98']

After you import the csv module and make a reader object from the
CSV file, you can loop through the rows in the reader object. Each row is a
list of values, with each value representing a cell.

The print() function call prints the number of the current row and the
contents of the row. To get the row number, use the reader object’s line_num
variable, which contains the number of the current line.

The reader object can be looped over only once. To reread the CSV file,
you must call csv.reader to create a reader object.

writer Objects
A writer object lets you write data to a CSV file. To create a writer object, you
use the csv.writer() function. Enter the following into the interactive shell:

>>> import csv
 >>> outputFile = open('output.csv', 'w', newline='')
 >>> outputWriter = csv.writer(outputFile)

>>> outputWriter.writerow(['spam', 'eggs', 'bacon', 'ham'])
21
>>> outputWriter.writerow(['Hello, world!', 'eggs', 'bacon', 'ham'])
32
>>> outputWriter.writerow([1, 2, 3.141592, 4])
16
>>> outputFile.close()

First, call open() and pass it 'w' to open a file in write mode . This will
create the object you can then pass to csv.writer()  to create a writer object.

On Windows, you’ll also need to pass a blank string for the open() func-
tion’s newline keyword argument. For technical reasons beyond the scope
of this book, if you forget to set the newline argument, the rows in output.csv
will be double-spaced, as shown in Figure 16-1.

Working with CSV Files and JSON Data 375

Figure 16-1: If you forget the newline='' keyword argument in open(), the CSV
file will be double-spaced.

The writerow() method for writer objects takes a list argument. Each value
in the list is placed in its own cell in the output CSV file. The return value of
writerow() is the number of characters written to the file for that row (includ-
ing newline characters).

This code produces an output.csv file that looks like this:

spam,eggs,bacon,ham
"Hello, world!",eggs,bacon,ham
1,2,3.141592,4

Notice how the writer object automatically escapes the comma in the
value 'Hello, world!' with double quotes in the CSV file. The csv module
saves you from having to handle these special cases yourself.

The delimiter and lineterminator Keyword Arguments
Say you want to separate cells with a tab character instead of a comma and
you want the rows to be double-spaced. You could enter something like the
following into the interactive shell:

>>> import csv
>>> csvFile = open('example.tsv', 'w', newline='')

 >>> csvWriter = csv.writer(csvFile, delimiter='\t', lineterminator='\n\n')
>>> csvWriter.writerow(['apples', 'oranges', 'grapes'])
24
>>> csvWriter.writerow(['eggs', 'bacon', 'ham'])
17
>>> csvWriter.writerow(['spam', 'spam', 'spam', 'spam', 'spam', 'spam'])
32
>>> csvFile.close()

This changes the delimiter and line terminator characters in your
file. The delimiter is the character that appears between cells on a row. By
default, the delimiter for a CSV file is a comma. The line terminator is the

376 Chapter 16

character that comes at the end of a row. By default, the line terminator
is a newline. You can change characters to different values by using the
delimiter and lineterminator keyword arguments with csv.writer().

Passing delimiter='\t' and lineterminator='\n\n'  changes the charac-
ter between cells to a tab and the character between rows to two newlines.
We then call writerow() three times to give us three rows.

This produces a file named example.tsv with the following contents:

apples oranges grapes

eggs bacon ham

spam spam spam spam spam spam

Now that our cells are separated by tabs, we’re using the file extension
.tsv, for tab-separated values.

DictReader and DictWriter CSV Objects
For CSV files that contain header rows, it’s often more convenient to work
with the DictReader and DictWriter objects, rather than the reader and writer
objects.

The reader and writer objects read and write to CSV file rows by using
lists. The DictReader and DictWriter CSV objects perform the same functions
but use dictionaries instead, and they use the first row of the CSV file as the
keys of these dictionaries.

Go to https://nostarch.com/automatestuff2/ and download the exampleWith​
Header.csv file. This file is the same as example.csv except it has Timestamp,
Fruit, and Quantity as the column headers in the first row.

To read the file, enter the following into the interactive shell:

>>> import csv
>>> exampleFile = open('exampleWithHeader.csv')
>>> exampleDictReader = csv.DictReader(exampleFile)
>>> for row in exampleDictReader:
... print(row['Timestamp'], row['Fruit'], row['Quantity'])
...
4/5/2015 13:34 Apples 73
4/5/2015 3:41 Cherries 85
4/6/2015 12:46 Pears 14
4/8/2015 8:59 Oranges 52
4/10/2015 2:07 Apples 152
4/10/2015 18:10 Bananas 23
4/10/2015 2:40 Strawberries 98

Inside the loop, DictReader object sets row to a dictionary object with
keys derived from the headers in the first row. (Well, technically, it sets row
to an OrderedDict object, which you can use in the same way as a diction-
ary; the difference between them is beyond the scope of this book.) Using
a DictReader object means you don’t need additional code to skip the first
row’s header information, since the DictReader object does this for you.

Working with CSV Files and JSON Data 377

If you tried to use DictReader objects with example.csv, which doesn’t have
column headers in the first row, the DictReader object would use '4/5/2015
13:34', 'Apples', and '73' as the dictionary keys. To avoid this, you can sup-
ply the DictReader() function with a second argument containing made-up
header names:

>>> import csv
>>> exampleFile = open('example.csv')
>>> exampleDictReader = csv.DictReader(exampleFile, ['time', 'name',
'amount'])
>>> for row in exampleDictReader:
... print(row['time'], row['name'], row['amount'])
...
4/5/2015 13:34 Apples 73
4/5/2015 3:41 Cherries 85
4/6/2015 12:46 Pears 14
4/8/2015 8:59 Oranges 52
4/10/2015 2:07 Apples 152
4/10/2015 18:10 Bananas 23
4/10/2015 2:40 Strawberries 98

Because example.csv’s first row doesn’t have any text for the heading of
each column, we created our own: 'time', 'name', and 'amount'.

DictWriter objects use dictionaries to create CSV files.

>>> import csv
>>> outputFile = open('output.csv', 'w', newline='')
>>> outputDictWriter = csv.DictWriter(outputFile, ['Name', 'Pet', 'Phone'])
>>> outputDictWriter.writeheader()
>>> outputDictWriter.writerow({'Name': 'Alice', 'Pet': 'cat', 'Phone': '555-
1234'})
20
>>> outputDictWriter.writerow({'Name': 'Bob', 'Phone': '555-9999'})
15
>>> outputDictWriter.writerow({'Phone': '555-5555', 'Name': 'Carol', 'Pet':
'dog'})
20
>>> outputFile.close()

If you want your file to contain a header row, write that row by call-
ing writeheader(). Otherwise, skip calling writeheader() to omit a header
row from the file. You then write each row of the CSV file with a writerow()
method call, passing a dictionary that uses the headers as keys and contains
the data to write to the file.

The output.csv file this code creates looks like this:

Name,Pet,Phone
Alice,cat,555-1234
Bob,,555-9999
Carol,dog,555-5555

378 Chapter 16

Notice that the order of the key-value pairs in the dictionaries you
passed to writerow() doesn’t matter: they’re written in the order of the keys
given to DictWriter(). For example, even though you passed the Phone key
and value before the Name and Pet keys and values in the fourth row, the
phone number still appeared last in the output.

Notice also that any missing keys, such as 'Pet' in {'Name': 'Bob',
'Phone': '555-9999'}, will simply be empty in the CSV file.

Project: Removing the Header from CSV Files
Say you have the boring job of removing the first line from several hundred
CSV files. Maybe you’ll be feeding them into an automated process that
requires just the data and not the headers at the top of the columns. You
could open each file in Excel, delete the first row, and resave the file—but
that would take hours. Let’s write a program to do it instead.

The program will need to open every file with the .csv extension in the
current working directory, read in the contents of the CSV file, and rewrite
the contents without the first row to a file of the same name. This will
replace the old contents of the CSV file with the new, headless contents.

W A R N I N G 	 As always, whenever you write a program that modifies files, be sure to back up the
files first, just in case your program does not work the way you expect it to. You don’t
want to accidentally erase your original files.

At a high level, the program must do the following:

1.	 Find all the CSV files in the current working directory.

2.	 Read in the full contents of each file.

3.	 Write out the contents, skipping the first line, to a new CSV file.

At the code level, this means the program will need to do the following:

1.	 Loop over a list of files from os.listdir(), skipping the non-CSV files.

2.	 Create a CSV reader object and read in the contents of the file, using
the line_num attribute to figure out which line to skip.

3.	 Create a CSV writer object and write out the read-in data to the new file.

For this project, open a new file editor window and save it as
removeCsvHeader.py.

Step 1: Loop Through Each CSV File
The first thing your program needs to do is loop over a list of all CSV file-
names for the current working directory. Make your removeCsvHeader.py look
like this:

#! python3
removeCsvHeader.py - Removes the header from all CSV files in the current

Working with CSV Files and JSON Data 379

working directory.

import csv, os

os.makedirs('headerRemoved', exist_ok=True)

Loop through every file in the current working directory.
for csvFilename in os.listdir('.'):
 if not csvFilename.endswith('.csv'):

  continue # skip non-csv files

 print('Removing header from ' + csvFilename + '...')

 # TODO: Read the CSV file in (skipping first row).

 # TODO: Write out the CSV file.

The os.makedirs() call will create a headerRemoved folder where all the
headless CSV files will be written. A for loop on os.listdir('.') gets you
partway there, but it will loop over all files in the working directory, so
you’ll need to add some code at the start of the loop that skips filenames
that don’t end with .csv. The continue statement  makes the for loop move
on to the next filename when it comes across a non-CSV file.

Just so there’s some output as the program runs, print out a message
saying which CSV file the program is working on. Then, add some TODO
comments for what the rest of the program should do.

Step 2: Read in the CSV File
The program doesn’t remove the first line from the CSV file. Rather, it creates
a new copy of the CSV file without the first line. Since the copy’s filename is
the same as the original filename, the copy will overwrite the original.

The program will need a way to track whether it is currently looping on
the first row. Add the following to removeCsvHeader.py.

#! python3
removeCsvHeader.py - Removes the header from all CSV files in the current
working directory.

--snip--

 # Read the CSV file in (skipping first row).
 csvRows = []
 csvFileObj = open(csvFilename)
 readerObj = csv.reader(csvFileObj)
 for row in readerObj:
 if readerObj.line_num == 1:
 continue # skip first row
 csvRows.append(row)
 csvFileObj.close()

 # TODO: Write out the CSV file.

380 Chapter 16

The reader object’s line_num attribute can be used to determine which
line in the CSV file it is currently reading. Another for loop will loop over
the rows returned from the CSV reader object, and all rows but the first will
be appended to csvRows.

As the for loop iterates over each row, the code checks whether
readerObj​.line_num is set to 1. If so, it executes a continue to move on to the
next row without appending it to csvRows. For every row afterward, the con-
dition will be always be False, and the row will be appended to csvRows.

Step 3: Write Out the CSV File Without the First Row
Now that csvRows contains all rows but the first row, the list needs to be
written out to a CSV file in the headerRemoved folder. Add the following to
removeCsvHeader.py:

#! python3
removeCsvHeader.py - Removes the header from all CSV files in the current
working directory.
--snip--

Loop through every file in the current working directory.
 for csvFilename in os.listdir('.'):

 if not csvFilename.endswith('.csv'):
 continue # skip non-CSV files

 --snip--

 # Write out the CSV file.
 csvFileObj = open(os.path.join('headerRemoved', csvFilename), 'w',
 newline='')
 csvWriter = csv.writer(csvFileObj)
 for row in csvRows:
 csvWriter.writerow(row)
 csvFileObj.close()

The CSV writer object will write the list to a CSV file in headerRemoved
using csvFilename (which we also used in the CSV reader). This will over-
write the original file.

Once we create the writer object, we loop over the sublists stored in
csvRows and write each sublist to the file.

After the code is executed, the outer for loop  will loop to the next
filename from os.listdir('.'). When that loop is finished, the program will
be complete.

To test your program, download removeCsvHeader.zip from https://nostarch
.com/automatestuff2/ and unzip it to a folder. Run the removeCsvHeader.py pro-
gram in that folder. The output will look like this:

Removing header from NAICS_data_1048.csv...
Removing header from NAICS_data_1218.csv...
--snip--

https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/

Working with CSV Files and JSON Data 381

Removing header from NAICS_data_9834.csv...
Removing header from NAICS_data_9986.csv...

This program should print a filename each time it strips the first line
from a CSV file.

Ideas for Similar Programs
The programs that you could write for CSV files are similar to the kinds you
could write for Excel files, since they’re both spreadsheet files. You could
write programs to do the following:

•	 Compare data between different rows in a CSV file or between multiple
CSV files.

•	 Copy specific data from a CSV file to an Excel file, or vice versa.

•	 Check for invalid data or formatting mistakes in CSV files and alert the
user to these errors.

•	 Read data from a CSV file as input for your Python programs.

JSON and APIs
JavaScript Object Notation is a popular way to format data as a single
human-readable string. JSON is the native way that JavaScript programs
write their data structures and usually resembles what Python’s pprint()
function would produce. You don’t need to know JavaScript in order to
work with JSON-formatted data.

Here’s an example of data formatted as JSON:

{"name": "Zophie", "isCat": true,
 "miceCaught": 0, "napsTaken": 37.5,
 "felineIQ": null}

JSON is useful to know, because many websites offer JSON content as
a way for programs to interact with the website. This is known as provid-
ing an application programming interface (API). Accessing an API is the same
as accessing any other web page via a URL. The difference is that the data
returned by an API is formatted (with JSON, for example) for machines;
APIs aren’t easy for people to read.

Many websites make their data available in JSON format. Facebook,
Twitter, Yahoo, Google, Tumblr, Wikipedia, Flickr, Data.gov, Reddit, IMDb,
Rotten Tomatoes, LinkedIn, and many other popular sites offer APIs for
programs to use. Some of these sites require registration, which is almost
always free. You’ll have to find documentation for what URLs your program
needs to request in order to get the data you want, as well as the general
format of the JSON data structures that are returned. This documenta-
tion should be provided by whatever site is offering the API; if they have
a “Developers” page, look for the documentation there.

382 Chapter 16

Using APIs, you could write programs that do the following:

•	 Scrape raw data from websites. (Accessing APIs is often more convenient
than downloading web pages and parsing HTML with Beautiful Soup.)

•	 Automatically download new posts from one of your social network
accounts and post them to another account. For example, you could
take your Tumblr posts and post them to Facebook.

•	 Create a “movie encyclopedia” for your personal movie collection by
pulling data from IMDb, Rotten Tomatoes, and Wikipedia and putting
it into a single text file on your computer.

You can see some examples of JSON APIs in the resources at https://
nostarch.com/automatestuff2/.

JSON isn’t the only way to format data into a human-readable string.
There are many others, including XML (eXtensible Markup Language),
TOML (Tom’s Obvious, Minimal Language), YML (Yet another Markup
Language), INI (Initialization), or even the outdated ASN.1 (Abstract
Syntax Notation One) formats, all of which provide a structure for repre-
senting data as human-readable text. This book won’t cover these, because
JSON has quickly become the most widely used alternate format, but there
are third-party Python modules that readily handle them.

The json Module
Python’s json module handles all the details of translating between a string
with JSON data and Python values for the json.loads() and json.dumps()
functions. JSON can’t store every kind of Python value. It can contain values
of only the following data types: strings, integers, floats, Booleans, lists,
dictionaries, and NoneType. JSON cannot represent Python-specific objects,
such as File objects, CSV reader or writer objects, Regex objects, or Selenium
WebElement objects.

Reading JSON with the loads() Function
To translate a string containing JSON data into a Python value, pass it to
the json.loads() function. (The name means “load string,” not “loads.”)
Enter the following into the interactive shell:

>>> stringOfJsonData = '{"name": "Zophie", "isCat": true, "miceCaught": 0,
"felineIQ": null}'
>>> import json
>>> jsonDataAsPythonValue = json.loads(stringOfJsonData)
>>> jsonDataAsPythonValue
{'isCat': True, 'miceCaught': 0, 'name': 'Zophie', 'felineIQ': None}

After you import the json module, you can call loads() and pass it a
string of JSON data. Note that JSON strings always use double quotes. It
will return that data as a Python dictionary. Python dictionaries are not

Working with CSV Files and JSON Data 383

ordered, so the key-value pairs may appear in a different order when you
print jsonDataAsPythonValue.

Writing JSON with the dumps() Function
The json.dumps() function (which means “dump string,” not “dumps”) will
translate a Python value into a string of JSON-formatted data. Enter the fol-
lowing into the interactive shell:

>>> pythonValue = {'isCat': True, 'miceCaught': 0, 'name': 'Zophie',
'felineIQ': None}
>>> import json
>>> stringOfJsonData = json.dumps(pythonValue)
>>> stringOfJsonData
'{"isCat": true, "felineIQ": null, "miceCaught": 0, "name": "Zophie" }'

The value can only be one of the following basic Python data types:
dictionary, list, integer, float, string, Boolean, or None.

Project: Fetching Current Weather Data
Checking the weather seems fairly trivial: Open your web browser, click the
address bar, type the URL to a weather website (or search for one and then
click the link), wait for the page to load, look past all the ads, and so on.

Actually, there are a lot of boring steps you could skip if you had
a program that downloaded the weather forecast for the next few days
and printed it as plaintext. This program uses the requests module from
Chapter 12 to download data from the web.

Overall, the program does the following:

1.	 Reads the requested location from the command line

2.	 Downloads JSON weather data from OpenWeatherMap.org

3.	 Converts the string of JSON data to a Python data structure

4.	 Prints the weather for today and the next two days

So the code will need to do the following:

1.	 Join strings in sys.argv to get the location.

2.	 Call requests.get() to download the weather data.

3.	 Call json.loads() to convert the JSON data to a Python data structure.

4.	 Print the weather forecast.

For this project, open a new file editor window and save it as getOpen​
Weather.py. Then visit https://openweathermap.org/api/ in your browser and
sign up for a free account to obtain an API key, also called an app ID, which
for the OpenWeatherMap service is a string code that looks something like
'30144aba38018987d84710d0e319281e'. You don’t need to pay for this service

384 Chapter 16

unless you plan on making more than 60 API calls per minute. Keep
the API key secret; anyone who knows it can write scripts that use your
account’s usage quota.

Step 1: Get Location from the Command Line Argument
The input for this program will come from the command line. Make
getOpenWeather.py look like this:

#! python3
getOpenWeather.py - Prints the weather for a location from the command line.

APPID = 'YOUR_APPID_HERE'

import json, requests, sys

Compute location from command line arguments.
if len(sys.argv) < 2:
 print('Usage: getOpenWeather.py city_name, 2-letter_country_code')
 sys.exit()
location = ' '.join(sys.argv[1:])

TODO: Download the JSON data from OpenWeatherMap.org's API.

TODO: Load JSON data into a Python variable.

In Python, command line arguments are stored in the sys.argv list.
The APPID variable should be set to the API key for your account. Without
this key, your requests to the weather service will fail. After the #! shebang
line and import statements, the program will check that there is more
than one command line argument. (Recall that sys.argv will always have
at least one element, sys.argv[0], which contains the Python script’s file-
name.) If there is only one element in the list, then the user didn’t provide
a location on the command line, and a “usage” message will be provided to
the user before the program ends.

The OpenWeatherMap service requires that the query be formatted as
the city name, a comma, and a two-letter country code (like “US” for the
United States). You can find a list of these codes at https://en.wikipedia.org
/wiki/ISO_3166-1_alpha-2. Our script displays the weather for the first city
listed in the retrieved JSON text. Unfortunately, cities that share a name,
like Portland, Oregon, and Portland, Maine, will both be included, though
the JSON text will include longitude and latitude information to differenti-
ate between the cities.

Command line arguments are split on spaces. The command line
argument San Francisco, US would make sys.argv hold ['getOpenWeather.py',
'San', 'Francisco,', 'US']. Therefore, call the join() method to join all the
strings except for the first in sys.argv. Store this joined string in a variable
named location.

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Working with CSV Files and JSON Data 385

Step 2: Download the JSON Data
OpenWeatherMap.org provides real-time weather information in JSON format.
First you must sign up for a free API key on the site. (This key is used to limit
how frequently you make requests on their server, to keep their bandwidth
costs down.) Your program simply has to download the page at https://api​
.openweathermap.org/data/2.5/forecast/daily?q=<Location>&cnt=3&APPID=<API
key>, where <Location> is the name of the city whose weather you want and
<API key> is your personal API key. Add the following to getOpenWeather.py.

#! python3
getOpenWeather.py - Prints the weather for a location from the command line.

--snip--

Download the JSON data from OpenWeatherMap.org's API.
url ='https://api.openweathermap.org/data/2.5/forecast/daily?q=%s&cnt=3&APPID=%s ' % (location,
APPID)
response = requests.get(url)
response.raise_for_status()

Uncomment to see the raw JSON text:
#print(response.text)

TODO: Load JSON data into a Python variable.

We have location from our command line arguments. To make the URL
we want to access, we use the %s placeholder and insert whatever string is
stored in location into that spot in the URL string. We store the result in
url and pass url to requests.get(). The requests.get() call returns a Response
object, which you can check for errors by calling raise_for_status(). If no
exception is raised, the downloaded text will be in response.text.

Step 3: Load JSON Data and Print Weather
The response.text member variable holds a large string of JSON-formatted
data. To convert this to a Python value, call the json.loads() function. The
JSON data will look something like this:

{'city': {'coord': {'lat': 37.7771, 'lon': -122.42},
 'country': 'United States of America',
 'id': '5391959',
 'name': 'San Francisco',
 'population': 0},
 'cnt': 3,
 'cod': '200',
 'list': [{'clouds': 0,
 'deg': 233,
 'dt': 1402344000,
 'humidity': 58,
 'pressure': 1012.23,

386 Chapter 16

 'speed': 1.96,
 'temp': {'day': 302.29,
 'eve': 296.46,
 'max': 302.29,
 'min': 289.77,
 'morn': 294.59,
 'night': 289.77},
 'weather': [{'description': 'sky is clear',
 'icon': '01d',
--snip--

You can see this data by passing weatherData to pprint.pprint(). You may
want to check https://openweathermap.org/ for more documentation on what
these fields mean. For example, the online documentation will tell you that
the 302.29 after 'day' is the daytime temperature in Kelvin, not Celsius or
Fahrenheit.

The weather descriptions you want are after 'main' and 'description'.
To neatly print them out, add the following to getOpenWeather.py.

! python3
getOpenWeather.py - Prints the weather for a location from the command line.

--snip--

Load JSON data into a Python variable.
weatherData = json.loads(response.text)

Print weather descriptions.
 w = weatherData['list']

print('Current weather in %s:' % (location))
print(w[0]['weather'][0]['main'], '-', w[0]['weather'][0]['description'])
print()
print('Tomorrow:')
print(w[1]['weather'][0]['main'], '-', w[1]['weather'][0]['description'])
print()
print('Day after tomorrow:')
print(w[2]['weather'][0]['main'], '-', w[2]['weather'][0]['description'])

Notice how the code stores weatherData['list'] in the variable w to save
you some typing . You use w[0], w[1], and w[2] to retrieve the dictionaries
for today, tomorrow, and the day after tomorrow’s weather, respectively.
Each of these dictionaries has a 'weather' key, which contains a list value.
You’re interested in the first list item, a nested dictionary with several
more keys, at index 0. Here, we print the values stored in the 'main' and
'description' keys, separated by a hyphen.

When this program is run with the command line argument getOpen​
Weather.py San Francisco, CA, the output looks something like this:

Current weather in San Francisco, CA:
Clear - sky is clear

Working with CSV Files and JSON Data 387

Tomorrow:
Clouds - few clouds

Day after tomorrow:
Clear - sky is clear

(The weather is one of the reasons I like living in San Francisco!)

Ideas for Similar Programs
Accessing weather data can form the basis for many types of programs. You
can create similar programs to do the following:

•	 Collect weather forecasts for several campsites or hiking trails to see
which one will have the best weather.

•	 Schedule a program to regularly check the weather and send you a frost
alert if you need to move your plants indoors. (Chapter 17 covers sched-
uling, and Chapter 18 explains how to send email.)

•	 Pull weather data from multiple sites to show all at once, or calculate
and show the average of the multiple weather predictions.

Summary
CSV and JSON are common plaintext formats for storing data. They are easy
for programs to parse while still being human readable, so they are often
used for simple spreadsheets or web app data. The csv and json modules
greatly simplify the process of reading and writing to CSV and JSON files.

The last few chapters have taught you how to use Python to parse infor-
mation from a wide variety of file formats. One common task is taking data
from a variety of formats and parsing it for the particular information you
need. These tasks are often specific to the point that commercial software
is not optimally helpful. By writing your own scripts, you can make the com-
puter handle large amounts of data presented in these formats.

In Chapter 18, you’ll break away from data formats and learn how
to make your programs communicate with you by sending emails and
text messages.

Practice Questions

1.	 What are some features Excel spreadsheets have that CSV spread-
sheets don’t?

2.	 What do you pass to csv.reader() and csv.writer() to create reader and
writer objects?

3.	 What modes do File objects for reader and writer objects need to be
opened in?

388 Chapter 16

4.	 What method takes a list argument and writes it to a CSV file?

5.	 What do the delimiter and lineterminator keyword arguments do?

6.	 What function takes a string of JSON data and returns a Python data
structure?

7.	 What function takes a Python data structure and returns a string of
JSON data?

Practice Project
For practice, write a program that does the following.

Excel-to-CSV Converter
Excel can save a spreadsheet to a CSV file with a few mouse clicks, but if
you had to convert hundreds of Excel files to CSVs, it would take hours of
clicking. Using the openpyxl module from Chapter 12, write a program that
reads all the Excel files in the current working directory and outputs them
as CSV files.

A single Excel file might contain multiple sheets; you’ll have to
create one CSV file per sheet. The filenames of the CSV files should be
<excel filename>_<sheet title>.csv, where <excel filename> is the filename of
the Excel file without the file extension (for example, 'spam_data', not
'spam_data.xlsx') and <sheet title> is the string from the Worksheet object’s
title variable.

This program will involve many nested for loops. The skeleton of the
program will look something like this:

for excelFile in os.listdir('.'):
 # Skip non-xlsx files, load the workbook object.
 for sheetName in wb.get_sheet_names():
 # Loop through every sheet in the workbook.
 sheet = wb.get_sheet_by_name(sheetName)

 # Create the CSV filename from the Excel filename and sheet title.
 # Create the csv.writer object for this CSV file.

 # Loop through every row in the sheet.
 for rowNum in range(1, sheet.max_row + 1):
 rowData = [] # append each cell to this list
 # Loop through each cell in the row.
 for colNum in range(1, sheet.max_column + 1):
 # Append each cell's data to rowData.

 # Write the rowData list to the CSV file.

 csvFile.close()

Download the ZIP file excelSpreadsheets.zip from https://nostarch.com
/automatestuff2/ and unzip the spreadsheets into the same directory as
your program. You can use these as the files to test the program on.

https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/

17
K E E P I N G T I M E ,

S C H E D U L I N G T A S K S ,
A N D L A U N C H I N G P R O G R A M S

Running programs while you’re sitting at
your computer is fine, but it’s also useful

to have programs run without your direct
supervision. Your computer’s clock can sched-

ule programs to run code at some specified time and
date or at regular intervals. For example, your program
could scrape a website every hour to check for changes or do a CPU-intensive
task at 4 am while you sleep. Python’s time and datetime modules provide these
functions.

You can also write programs that launch other programs on a sched-
ule by using the subprocess and threading modules. Often, the fastest way
to program is to take advantage of applications that other people have
already written.

390 Chapter 17

The time Module
Your computer’s system clock is set to a specific date, time, and time zone.
The built-in time module allows your Python programs to read the system
clock for the current time. The time.time() and time.sleep() functions are
the most useful in the time module.

The time.time() Function
The Unix epoch is a time reference commonly used in programming: 12 am
on January 1, 1970, Coordinated Universal Time (UTC). The time.time()
function returns the number of seconds since that moment as a float value.
(Recall that a float is just a number with a decimal point.) This number
is called an epoch timestamp. For example, enter the following into the
interactive shell:

>>> import time
>>> time.time()
1543813875.3518236

Here I’m calling time.time() on December 2, 2018, at 9:11 pm Pacific
Standard Time. The return value is how many seconds have passed between
the Unix epoch and the moment time.time() was called.

Epoch timestamps can be used to profile code, that is, measure how long a
piece of code takes to run. If you call time.time() at the beginning of the code
block you want to measure and again at the end, you can subtract the first
timestamp from the second to find the elapsed time between those two calls.
For example, open a new file editor tab and enter the following program:

import time
u def calcProd():

 # Calculate the product of the first 100,000 numbers.
 product = 1
 for i in range(1, 100000):
 product = product * i
 return product

v startTime = time.time()
prod = calcProd()

w endTime = time.time()
x print('The result is %s digits long.' % (len(str(prod))))
y print('Took %s seconds to calculate.' % (endTime - startTime))

At u, we define a function calcProd() to loop through the integers from
1 to 99,999 and return their product. At v, we call time.time() and store
it in startTime. Right after calling calcProd(), we call time.time() again and
store it in endTime w. We end by printing the length of the product returned
by calcProd() x and how long it took to run calcProd() y.

Keeping Time, Scheduling Tasks, and Launching Programs 391

Save this program as calcProd.py and run it. The output will look some-
thing like this:

The result is 456569 digits long.
Took 2.844162940979004 seconds to calculate.

N O T E 	 Another way to profile your code is to use the cProfile.run() function, which pro-
vides a much more informative level of detail than the simple time.time() technique.
The cProfile.run() function is explained at https://docs.python.org/3/library
/profile.html.

The return value from time.time() is useful, but not human-readable.
The time.ctime() function returns a string description of the current time.
You can also optionally pass the number of seconds since the Unix epoch,
as returned by time.time(), to get a string value of that time. Enter the fol-
lowing into the interactive shell:

>>> import time
>>> time.ctime()
'Mon Jun 15 14:00:38 2020'
>>> thisMoment = time.time()
>>> time.ctime(thisMoment)
'Mon Jun 15 14:00:45 2020'

The time.sleep() Function
If you need to pause your program for a while, call the time.sleep() function
and pass it the number of seconds you want your program to stay paused.
Enter the following into the interactive shell:

>>> import time
>>> for i in range(3):

 u print('Tick')
 v time.sleep(1)
 w print('Tock')
 x time.sleep(1)

Tick
Tock
Tick
Tock
Tick
Tock

y >>> time.sleep(5)

The for loop will print Tick u, pause for 1 second v, print Tock w, pause
for 1 second x, print Tick, pause, and so on until Tick and Tock have each
been printed three times.

https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html

392 Chapter 17

The time.sleep() function will block—that is, it will not return and
release your program to execute other code—until after the number of
seconds you passed to time.sleep() has elapsed. For example, if you enter
time.sleep(5) y, you’ll see that the next prompt (>>>) doesn’t appear until
5 seconds have passed.

Rounding Numbers
When working with times, you’ll often encounter float values with many
digits after the decimal. To make these values easier to work with, you can
shorten them with Python’s built-in round() function, which rounds a float
to the precision you specify. Just pass in the number you want to round, plus
an optional second argument representing how many digits after the deci-
mal point you want to round it to. If you omit the second argument, round()
rounds your number to the nearest whole integer. Enter the following into
the interactive shell:

>>> import time
>>> now = time.time()
>>> now
1543814036.6147408
>>> round(now, 2)
1543814036.61
>>> round(now, 4)
1543814036.6147
>>> round(now)
1543814037

After importing time and storing time.time() in now, we call round(now, 2)
to round now to two digits after the decimal, round(now, 4) to round to four
digits after the decimal, and round(now) to round to the nearest integer.

Project: Super Stopwatch
Say you want to track how much time you spend on boring tasks you haven’t
automated yet. You don’t have a physical stopwatch, and it’s surprisingly dif-
ficult to find a free stopwatch app for your laptop or smartphone that isn’t
covered in ads and doesn’t send a copy of your browser history to marketers.
(It says it can do this in the license agreement you agreed to. You did read
the license agreement, didn’t you?) You can write a simple stopwatch pro-
gram yourself in Python.

At a high level, here’s what your program will do:

1.	 Track the amount of time elapsed between presses of the enter key,
with each key press starting a new “lap” on the timer.

2.	 Print the lap number, total time, and lap time.

Keeping Time, Scheduling Tasks, and Launching Programs 393

This means your code will need to do the following:

1.	 Find the current time by calling time.time() and store it as a timestamp
at the start of the program, as well as at the start of each lap.

2.	 Keep a lap counter and increment it every time the user presses enter.

3.	 Calculate the elapsed time by subtracting timestamps.

4.	 Handle the KeyboardInterrupt exception so the user can press ctrl-C
to quit.

Open a new file editor tab and save it as stopwatch.py.

Step 1: Set Up the Program to Track Times
The stopwatch program will need to use the current time, so you’ll want to
import the time module. Your program should also print some brief instruc-
tions to the user before calling input(), so the timer can begin after the user
presses enter. Then the code will start tracking lap times.

Enter the following code into the file editor, writing a TODO comment as
a placeholder for the rest of the code:

#! python3
stopwatch.py - A simple stopwatch program.

import time

Display the program's instructions.
print('Press ENTER to begin. Afterward, press ENTER to "click" the stopwatch.
Press Ctrl-C to quit.')
input() # press Enter to begin
print('Started.')
startTime = time.time() # get the first lap's start time
lastTime = startTime
lapNum = 1

TODO: Start tracking the lap times.

Now that we’ve written the code to display the instructions, start the
first lap, note the time, and set our lap count to 1.

Step 2: Track and Print Lap Times
Now let’s write the code to start each new lap, calculate how long the previ-
ous lap took, and calculate the total time elapsed since starting the stop-
watch. We’ll display the lap time and total time and increase the lap count
for each new lap. Add the following code to your program:

#! python3
stopwatch.py - A simple stopwatch program.

import time

--snip--

394 Chapter 17

Start tracking the lap times.
u try:
 v while True:
 input()
 w lapTime = round(time.time() - lastTime, 2)
 x totalTime = round(time.time() - startTime, 2)
 y print('Lap #%s: %s (%s)' % (lapNum, totalTime, lapTime), end='')

 lapNum += 1
 lastTime = time.time() # reset the last lap time

z except KeyboardInterrupt:
 # Handle the Ctrl-C exception to keep its error message from displaying.
 print('\nDone.')

If the user presses ctrl-C to stop the stopwatch, the KeyboardInterrupt
exception will be raised, and the program will crash if its execution is not
a try statement. To prevent crashing, we wrap this part of the program in a
try statement u. We’ll handle the exception in the except clause z, so when
ctrl-C is pressed and the exception is raised, the program execution moves
to the except clause to print Done, instead of the KeyboardInterrupt error mes-
sage. Until this happens, the execution is inside an infinite loop v that calls
input() and waits until the user presses enter to end a lap. When a lap ends,
we calculate how long the lap took by subtracting the start time of the lap,
lastTime, from the current time, time.time() w. We calculate the total time
elapsed by subtracting the overall start time of the stopwatch, startTime,
from the current time x.

Since the results of these time calculations will have many digits after
the decimal point (such as 4.766272783279419), we use the round() function to
round the float value to two digits at w and x.

At y, we print the lap number, total time elapsed, and the lap time.
Since the user pressing enter for the input() call will print a newline to
the screen, pass end='' to the print() function to avoid double-spacing the
output. After printing the lap information, we get ready for the next lap by
adding 1 to the count lapNum and setting lastTime to the current time, which
is the start time of the next lap.

Ideas for Similar Programs
Time tracking opens up several possibilities for your programs. Although
you can download apps to do some of these things, the benefit of writing
programs yourself is that they will be free and not bloated with ads and use-
less features. You could write similar programs to do the following:

•	 Create a simple timesheet app that records when you type a person’s
name and uses the current time to clock them in or out.

•	 Add a feature to your program to display the elapsed time since a
process started, such as a download that uses the requests module.
(See Chapter 12.)

•	 Intermittently check how long a program has been running and offer
the user a chance to cancel tasks that are taking too long.

Keeping Time, Scheduling Tasks, and Launching Programs 395

The datetime Module
The time module is useful for getting a Unix epoch timestamp to work with.
But if you want to display a date in a more convenient format, or do arith-
metic with dates (for example, figuring out what date was 205 days ago or
what date is 123 days from now), you should use the datetime module.

The datetime module has its own datetime data type. datetime values repre-
sent a specific moment in time. Enter the following into the interactive shell:

>>> import datetime
u >>> datetime.datetime.now()
v datetime.datetime(2019, 2, 27, 11, 10, 49, 55, 53)
w >>> dt = datetime.datetime(2019, 10, 21, 16, 29, 0)
x >>> dt.year, dt.month, dt.day

(2019, 10, 21)
y >>> dt.hour, dt.minute, dt.second

(16, 29, 0)

Calling datetime.datetime.now() u returns a datetime object v for the
current date and time, according to your computer’s clock. This object
includes the year, month, day, hour, minute, second, and microsecond of
the current moment. You can also retrieve a datetime object for a specific
moment by using the datetime.datetime() function w, passing it integers rep-
resenting the year, month, day, hour, and second of the moment you want.
These integers will be stored in the datetime object’s year, month, day x, hour,
minute, and second y attributes.

A Unix epoch timestamp can be converted to a datetime object with the
datetime.datetime.fromtimestamp() function. The date and time of the datetime
object will be converted for the local time zone. Enter the following into the
interactive shell:

>>> import datetime, time
>>> datetime.datetime.fromtimestamp(1000000)
datetime.datetime(1970, 1, 12, 5, 46, 40)
>>> datetime.datetime.fromtimestamp(time.time())
datetime.datetime(2019, 10, 21, 16, 30, 0, 604980)

Calling datetime.datetime.fromtimestamp() and passing it 1000000 returns
a datetime object for the moment 1,000,000 seconds after the Unix epoch.
Passing time.time(), the Unix epoch timestamp for the current moment,
returns a datetime object for the current moment. So the expressions datetime​
.datetime.now() and datetime.datetime.fromtimestamp(time.time()) do the same
thing; they both give you a datetime object for the present moment.

You can compare datetime objects with each other using comparison
operators to find out which one precedes the other. The later datetime
object is the “greater” value. Enter the following into the interactive shell:

u >>> halloween2019 = datetime.datetime(2019, 10, 31, 0, 0, 0)
v >>> newyears2020 = datetime.datetime(2020, 1, 1, 0, 0, 0)

>>> oct31_2019 = datetime.datetime(2019, 10, 31, 0, 0, 0)

396 Chapter 17

w >>> halloween2019 == oct31_2019
True

x >>> halloween2019 > newyears2020
False

y >>> newyears2020 > halloween2019
True
>>> newyears2020 != oct31_2019
True

Make a datetime object for the first moment (midnight) of October 31,
2019, and store it in halloween2019 u. Make a datetime object for the first
moment of January 1, 2020, and store it in newyears2020 v. Then make
another object for midnight on October 31, 2019, and store it in oct31_2019.
Comparing halloween2019 and oct31_2019 shows that they’re equal w. Comparing
newyears2020 and halloween2019 shows that newyears2020 is greater (later) than
halloween2019 x y.

The timedelta Data Type
The datetime module also provides a timedelta data type, which represents a
duration of time rather than a moment in time. Enter the following into the
interactive shell:

u >>> delta = datetime.timedelta(days=11, hours=10, minutes=9, seconds=8)
v >>> delta.days, delta.seconds, delta.microseconds

(11, 36548, 0)
>>> delta.total_seconds()
986948.0
>>> str(delta)
'11 days, 10:09:08'

To create a timedelta object, use the datetime.timedelta() function. The
datetime.timedelta() function takes keyword arguments weeks, days, hours,
minutes, seconds, milliseconds, and microseconds. There is no month or year
keyword argument, because “a month” or “a year” is a variable amount of
time depending on the particular month or year. A timedelta object has the
total duration represented in days, seconds, and microseconds. These num-
bers are stored in the days, seconds, and microseconds attributes, respectively.
The total_seconds() method will return the duration in number of seconds
alone. Passing a timedelta object to str() will return a nicely formatted,
human-readable string representation of the object.

In this example, we pass keyword arguments to datetime.delta() to
specify a duration of 11 days, 10 hours, 9 minutes, and 8 seconds, and
store the returned timedelta object in delta u. This timedelta object’s
days attributes stores 11, and its seconds attribute stores 36548 (10 hours,
9 minutes, and 8 seconds, expressed in seconds) v. Calling total_seconds()
tells us that 11 days, 10 hours, 9 minutes, and 8 seconds is 986,948 seconds.
Finally, passing the timedelta object to str() returns a string that plainly
describes the duration.

Keeping Time, Scheduling Tasks, and Launching Programs 397

The arithmetic operators can be used to perform date arithmetic on
datetime values. For example, to calculate the date 1,000 days from now,
enter the following into the interactive shell:

>>> dt = datetime.datetime.now()
>>> dt
datetime.datetime(2018, 12, 2, 18, 38, 50, 636181)
>>> thousandDays = datetime.timedelta(days=1000)
>>> dt + thousandDays
datetime.datetime(2021, 8, 28, 18, 38, 50, 636181)

First, make a datetime object for the current moment and store it in dt.
Then make a timedelta object for a duration of 1,000 days and store it in
thousandDays. Add dt and thousandDays together to get a datetime object for
the date 1,000 days from now. Python will do the date arithmetic to figure
out that 1,000 days after December 2, 2018, will be August 18, 2021. This is
useful because when you calculate 1,000 days from a given date, you have to
remember how many days are in each month and factor in leap years and
other tricky details. The datetime module handles all of this for you.

timedelta objects can be added or subtracted with datetime objects or
other timedelta objects using the + and - operators. A timedelta object can be
multiplied or divided by integer or float values with the * and / operators.
Enter the following into the interactive shell:

u >>> oct21st = datetime.datetime(2019, 10, 21, 16, 29, 0)
v >>> aboutThirtyYears = datetime.timedelta(days=365 * 30)

>>> oct21st
datetime.datetime(2019, 10, 21, 16, 29)
>>> oct21st - aboutThirtyYears
datetime.datetime(1989, 10, 28, 16, 29)
>>> oct21st - (2 * aboutThirtyYears)
datetime.datetime(1959, 11, 5, 16, 29)

Here we make a datetime object for October 21, 2019, u and a timedelta
object for a duration of about 30 years (we’re assuming 365 days for each
of those years) v. Subtracting aboutThirtyYears from oct21st gives us a
datetime object for the date 30 years before October 21, 2019. Subtracting
2 * aboutThirtyYears from oct21st returns a datetime object for the date
60 years before October 21, 2019.

Pausing Until a Specific Date
The time.sleep() method lets you pause a program for a certain number of sec-
onds. By using a while loop, you can pause your programs until a specific date.
For example, the following code will continue to loop until Halloween 2016:

import datetime
import time
halloween2016 = datetime.datetime(2016, 10, 31, 0, 0, 0)
while datetime.datetime.now() < halloween2016:
 time.sleep(1)

398 Chapter 17

The time.sleep(1) call will pause your Python program so that the
computer doesn’t waste CPU processing cycles simply checking the time
over and over. Rather, the while loop will just check the condition once per
second and continue with the rest of the program after Halloween 2016 (or
whenever you program it to stop).

Converting datetime Objects into Strings
Epoch timestamps and datetime objects aren’t very friendly to the human
eye. Use the strftime() method to display a datetime object as a string. (The
f in the name of the strftime() function stands for format.)

The strftime() method uses directives similar to Python’s string format-
ting. Table 17-1 has a full list of strftime() directives.

Table 17-1: strftime() Directives

strftime() directive Meaning

%Y Year with century, as in '2014'
%y Year without century, '00' to '99' (1970 to 2069)
%m Month as a decimal number, '01' to '12'
%B Full month name, as in 'November'
%b Abbreviated month name, as in 'Nov'
%d Day of the month, '01' to '31'
%j Day of the year, '001' to '366'
%w Day of the week, '0' (Sunday) to '6' (Saturday)
%A Full weekday name, as in 'Monday'
%a Abbreviated weekday name, as in 'Mon'
%H Hour (24-hour clock), '00' to '23'
%I Hour (12-hour clock), '01' to '12'
%M Minute, '00' to '59'
%S Second, '00' to '59'
%p 'AM' or 'PM'
%% Literal '%' character

Pass strftime() a custom format string containing formatting direc-
tives (along with any desired slashes, colons, and so on), and strftime() will
return the datetime object’s information as a formatted string. Enter the fol-
lowing into the interactive shell:

>>> oct21st = datetime.datetime(2019, 10, 21, 16, 29, 0)
>>> oct21st.strftime('%Y/%m/%d %H:%M:%S')
'2019/10/21 16:29:00'
>>> oct21st.strftime('%I:%M %p')
'04:29 PM'
>>> oct21st.strftime("%B of '%y")
"October of '19"

Keeping Time, Scheduling Tasks, and Launching Programs 399

Here we have a datetime object for October 21, 2019, at 4:29 pm, stored
in oct21st. Passing strftime() the custom format string '%Y/%m/%d %H:%M:%S'
returns a string containing 2019, 10, and 21 separated by slashes and 16, 29,
and 00 separated by colons. Passing '%I:%M% p' returns '04:29 PM', and pass-
ing "%B of '%y" returns "October of '19". Note that strftime() doesn’t begin
with datetime.datetime.

Converting Strings into datetime Objects
If you have a string of date information, such as '2019/10/21 16:29:00'
or 'October 21, 2019', and need to convert it to a datetime object, use the
datetime.datetime.strptime() function. The strptime() function is the inverse
of the strftime() method. A custom format string using the same directives
as strftime() must be passed so that strptime() knows how to parse and
understand the string. (The p in the name of the strptime() function
stands for parse.)

Enter the following into the interactive shell:

u >>> datetime.datetime.strptime('October 21, 2019', '%B %d, %Y')
datetime.datetime(2019, 10, 21, 0, 0)
>>> datetime.datetime.strptime('2019/10/21 16:29:00', '%Y/%m/%d %H:%M:%S')
datetime.datetime(2019, 10, 21, 16, 29)
>>> datetime.datetime.strptime("October of '19", "%B of '%y")
datetime.datetime(2019, 10, 1, 0, 0)
>>> datetime.datetime.strptime("November of '63", "%B of '%y")
datetime.datetime(2063, 11, 1, 0, 0)

To get a datetime object from the string 'October 21, 2019', pass that
string as the first argument to strptime() and the custom format string that
corresponds to 'October 21, 2019' as the second argument u. The string
with the date information must match the custom format string exactly,
or Python will raise a ValueError exception.

Review of Python’s Time Functions
Dates and times in Python can involve quite a few different data types and
functions. Here’s a review of the three different types of values used to rep-
resent time:

•	 A Unix epoch timestamp (used by the time module) is a float or integer
value of the number of seconds since 12 am on January 1, 1970, UTC.

•	 A datetime object (of the datetime module) has integers stored in the
attributes year, month, day, hour, minute, and second.

•	 A timedelta object (of the datetime module) represents a time duration,
rather than a specific moment.

400 Chapter 17

Here’s a review of time functions and their parameters and return values:

time.time()  This function returns an epoch timestamp float value of
the current moment.

time.sleep(seconds)  This function stops the program for the number of
seconds specified by the seconds argument.

datetime.datetime(year, month, day, hour, minute, second)  This function
returns a datetime object of the moment specified by the arguments. If
hour, minute, or second arguments are not provided, they default to 0.

datetime.datetime.now()  This function returns a datetime object of the
current moment.

datetime.datetime.fromtimestamp(epoch)  This function returns a datetime
object of the moment represented by the epoch timestamp argument.

datetime.timedelta(weeks, days, hours, minutes, seconds, milliseconds,

microseconds)  This function returns a timedelta object representing a
duration of time. The function’s keyword arguments are all optional
and do not include month or year.

total_seconds()  This method for timedelta objects returns the number
of seconds the timedelta object represents.

strftime(format)  This method returns a string of the time represented
by the datetime object in a custom format that’s based on the format
string. See Table 17-1 for the format details.

datetime.datetime.strptime(time_string, format)  This function returns a
datetime object of the moment specified by time_string, parsed using the
format string argument. See Table 17-1 for the format details.

Multithreading
To introduce the concept of multithreading, let’s look at an example situa-
tion. Say you want to schedule some code to run after a delay or at a specific
time. You could add code like the following at the start of your program:

import time, datetime

startTime = datetime.datetime(2029, 10, 31, 0, 0, 0)
while datetime.datetime.now() < startTime:
 time.sleep(1)

print('Program now starting on Halloween 2029')
--snip--

This code designates a start time of October 31, 2029, and keeps calling
time.sleep(1) until the start time arrives. Your program cannot do anything
while waiting for the loop of time.sleep() calls to finish; it just sits around
until Halloween 2029. This is because Python programs by default have a
single thread of execution.

Keeping Time, Scheduling Tasks, and Launching Programs 401

To understand what a thread of execution is, remember the Chapter 2
discussion of flow control, when you imagined the execution of a program
as placing your finger on a line of code in your program and moving to
the next line or wherever it was sent by a flow control statement. A single-
threaded program has only one finger. But a multithreaded program has
multiple fingers. Each finger still moves to the next line of code as defined
by the flow control statements, but the fingers can be at different places in
the program, executing different lines of code at the same time. (All of the
programs in this book so far have been single threaded.)

Rather than having all of your code wait until the time.sleep() func-
tion finishes, you can execute the delayed or scheduled code in a separate
thread using Python’s threading module. The separate thread will pause
for the time.sleep calls. Meanwhile, your program can do other work in the
original thread.

To make a separate thread, you first need to make a Thread object by
calling the threading.Thread() function. Enter the following code in a new
file and save it as threadDemo.py:

import threading, time
print('Start of program.')

u def takeANap():
 time.sleep(5)
 print('Wake up!')

v threadObj = threading.Thread(target=takeANap)
w threadObj.start()

print('End of program.')

At u, we define a function that we want to use in a new thread. To create
a Thread object, we call threading.Thread() and pass it the keyword argument
target=takeANap v. This means the function we want to call in the new thread
is takeANap(). Notice that the keyword argument is target=takeANap, not target​
=takeANap(). This is because you want to pass the takeANap() function itself as
the argument, not call takeANap() and pass its return value.

After we store the Thread object created by threading.Thread() in threadObj,
we call threadObj.start() w to create the new thread and start executing the
target function in the new thread. When this program is run, the output
will look like this:

Start of program.
End of program.
Wake up!

This can be a bit confusing. If print('End of program.') is the last line of
the program, you might think that it should be the last thing printed. The
reason Wake up! comes after it is that when threadObj.start() is called, the tar-
get function for threadObj is run in a new thread of execution. Think of it as
a second finger appearing at the start of the takeANap() function. The main

402 Chapter 17

thread continues to print('End of program.'). Meanwhile, the new thread
that has been executing the time.sleep(5) call, pauses for 5 seconds. After it
wakes from its 5-second nap, it prints 'Wake up!' and then returns from the
takeANap() function. Chronologically, 'Wake up!' is the last thing printed by
the program.

Normally a program terminates when the last line of code in the file
has run (or the sys.exit() function is called). But threadDemo.py has two
threads. The first is the original thread that began at the start of the pro-
gram and ends after print('End of program.'). The second thread is created
when threadObj.start() is called, begins at the start of the takeANap() func-
tion, and ends after takeANap() returns.

A Python program will not terminate until all its threads have termi-
nated. When you ran threadDemo.py, even though the original thread had
terminated, the second thread was still executing the time.sleep(5) call.

Passing Arguments to the Thread’s Target Function
If the target function you want to run in the new thread takes arguments,
you can pass the target function’s arguments to threading.Thread(). For
example, say you wanted to run this print() call in its own thread:

>>> print('Cats', 'Dogs', 'Frogs', sep=' & ')
Cats & Dogs & Frogs

This print() call has three regular arguments, 'Cats', 'Dogs', and 'Frogs',
and one keyword argument, sep=' & '. The regular arguments can be passed
as a list to the args keyword argument in threading.Thread(). The keyword
argument can be specified as a dictionary to the kwargs keyword argument
in threading.Thread().

Enter the following into the interactive shell:

>>> import threading
>>> threadObj = threading.Thread(target=print, args=['Cats', 'Dogs', 'Frogs'],
kwargs={'sep': ' & '})
>>> threadObj.start()
Cats & Dogs & Frogs

To make sure the arguments 'Cats', 'Dogs', and 'Frogs' get passed to
print() in the new thread, we pass args=['Cats', 'Dogs', 'Frogs'] to threading
.Thread(). To make sure the keyword argument sep=' & ' gets passed to
print() in the new thread, we pass kwargs={'sep': '& '} to threading.Thread().

The threadObj.start() call will create a new thread to call the print()
function, and it will pass 'Cats', 'Dogs', and 'Frogs' as arguments and ' & '
for the sep keyword argument.

This is an incorrect way to create the new thread that calls print():

threadObj = threading.Thread(target=print('Cats', 'Dogs', 'Frogs', sep=' & '))

Keeping Time, Scheduling Tasks, and Launching Programs 403

What this ends up doing is calling the print() function and passing its
return value (print()’s return value is always None) as the target keyword
argument. It doesn’t pass the print() function itself. When passing argu-
ments to a function in a new thread, use the threading.Thread() function’s
args and kwargs keyword arguments.

Concurrency Issues
You can easily create several new threads and have them all running at the
same time. But multiple threads can also cause problems called concurrency
issues. These issues happen when threads read and write variables at the
same time, causing the threads to trip over each other. Concurrency issues
can be hard to reproduce consistently, making them hard to debug.

Multithreaded programming is its own wide subject and beyond the
scope of this book. What you have to keep in mind is this: to avoid concur-
rency issues, never let multiple threads read or write the same variables.
When you create a new Thread object, make sure its target function uses only
local variables in that function. This will avoid hard-to-debug concurrency
issues in your programs.

N O T E 	 A beginner’s tutorial on multithreaded programming is available at https://
nostarch.com/automatestuff2/.

Project: Multithreaded XKCD Downloader
In Chapter 12, you wrote a program that downloaded all of the XKCD
comic strips from the XKCD website. This was a single-threaded program:
it downloaded one comic at a time. Much of the program’s running time
was spent establishing the network connection to begin the download and
writing the downloaded images to the hard drive. If you have a broadband
internet connection, your single-threaded program wasn’t fully utilizing the
available bandwidth.

A multithreaded program that has some threads downloading comics
while others are establishing connections and writing the comic image files
to disk uses your internet connection more efficiently and downloads the
collection of comics more quickly. Open a new file editor tab and save it as
threadedDownloadXkcd.py. You will modify this program to add multithread-
ing. The completely modified source code is available to download from
https://nostarch.com/automatestuff2/.

Step 1: Modify the Program to Use a Function
This program will mostly be the same downloading code from Chapter 12,
so I’ll skip the explanation for the requests and Beautiful Soup code. The
main changes you need to make are importing the threading module and
making a downloadXkcd() function, which takes starting and ending comic
numbers as parameters.

404 Chapter 17

For example, calling downloadXkcd(140, 280) would loop over the down-
loading code to download the comics at https://xkcd.com/140/, https://xkcd
.com/141/, https://xkcd.com/142/, and so on, up to https://xkcd.com/279/. Each
thread that you create will call downloadXkcd() and pass a different range of
comics to download.

Add the following code to your threadedDownloadXkcd.py program:

#! python3
threadedDownloadXkcd.py - Downloads XKCD comics using multiple threads.

import requests, os, bs4, threading
u os.makedirs('xkcd', exist_ok=True) # store comics in ./xkcd

v def downloadXkcd(startComic, endComic):
 w for urlNumber in range(startComic, endComic):

 # Download the page.
 print('Downloading page https://xkcd.com/%s...' % (urlNumber))

 x res = requests.get('https://xkcd.com/%s' % (urlNumber))
 res.raise_for_status()

 y soup = bs4.BeautifulSoup(res.text, 'html.parser')

 # Find the URL of the comic image.
 z comicElem = soup.select('#comic img')

 if comicElem == []:
 print('Could not find comic image.')
 else:

 { comicUrl = comicElem[0].get('src')
 # Download the image.
 print('Downloading image %s...' % (comicUrl))

 | res = requests.get('https:' + comicUrl)
 res.raise_for_status()

 # Save the image to ./xkcd.
 imageFile = open(os.path.join('xkcd', os.path.basename(comicUrl)),
'wb')
 for chunk in res.iter_content(100000):
 imageFile.write(chunk)
 imageFile.close()

TODO: Create and start the Thread objects.
TODO: Wait for all threads to end.

After importing the modules we need, we make a directory to store
comics in u and start defining downloadxkcd() v. We loop through all the
numbers in the specified range w and download each page x. We use
Beautiful Soup to look through the HTML of each page y and find the
comic image z. If no comic image is found on a page, we print a message.
Otherwise, we get the URL of the image { and download the image |.
Finally, we save the image to the directory we created.

https://xkcd.com/141/
https://xkcd.com/141/

Keeping Time, Scheduling Tasks, and Launching Programs 405

Step 2: Create and Start Threads
Now that we’ve defined downloadXkcd(), we’ll create the multiple threads that
each call downloadXkcd() to download different ranges of comics from the
XKCD website. Add the following code to threadedDownloadXkcd.py after
the downloadXkcd() function definition:

#! python3
threadedDownloadXkcd.py - Downloads XKCD comics using multiple threads.

--snip--

Create and start the Thread objects.
downloadThreads = [] # a list of all the Thread objects
for i in range(0, 140, 10): # loops 14 times, creates 14 threads
 start = i
 end = i + 9
 if start == 0:
 start = 1 # There is no comic 0, so set it to 1.
 downloadThread = threading.Thread(target=downloadXkcd, args=(start, end))
 downloadThreads.append(downloadThread)
 downloadThread.start()

First we make an empy list downloadThreads; the list will help us
keep track of the many Thread objects we’ll create. Then we start our
for loop. Each time through the loop, we create a Thread object with
threading.Thread(), append the Thread object to the list, and call start()
to start running downloadXkcd() in the new thread. Since the for loop sets
the i variable from 0 to 140 at steps of 10, i will be set to 0 on the first
iteration, 10 on the second iteration, 20 on the third, and so on. Since we
pass args=(start, end) to threading.Thread(), the two arguments passed to
downloadXkcd() will be 1 and 9 on the first iteration, 10 and 19 on the second
iteration, 20 and 29 on the third, and so on.

As the Thread object’s start() method is called and the new thread begins
to run the code inside downloadXkcd(), the main thread will continue to the
next iteration of the for loop and create the next thread.

Step 3: Wait for All Threads to End
The main thread moves on as normal while the other threads we create
download comics. But say there’s some code you don’t want to run in the
main thread until all the threads have completed. Calling a Thread object’s
join() method will block until that thread has finished. By using a for loop
to iterate over all the Thread objects in the downloadThreads list, the main
thread can call the join() method on each of the other threads. Add the
following to the bottom of your program:

#! python3
threadedDownloadXkcd.py - Downloads XKCD comics using multiple threads.

406 Chapter 17

--snip--

Wait for all threads to end.
for downloadThread in downloadThreads:
 downloadThread.join()
print('Done.')

The 'Done.' string will not be printed until all of the join() calls have
returned. If a Thread object has already completed when its join() method
is called, then the method will simply return immediately. If you wanted to
extend this program with code that runs only after all of the comics down-
loaded, you could replace the print('Done.') line with your new code.

Launching Other Programs from Python
Your Python program can start other programs on your computer with the
Popen() function in the built-in subprocess module. (The P in the name of
the Popen() function stands for process.) If you have multiple instances of an
application open, each of those instances is a separate process of the same
program. For example, if you open multiple windows of your web browser
at the same time, each of those windows is a different process of the web
browser program. See Figure 17-1 for an example of multiple calculator
processes open at once.

Figure 17-1: Six running processes of the same calculator program

Every process can have multiple threads. Unlike threads, a process can-
not directly read and write another process’s variables. If you think of a
multithreaded program as having multiple fingers following source code,
then having multiple processes of the same program open is like having
a friend with a separate copy of the program’s source code. You are both
independently executing the same program.

Keeping Time, Scheduling Tasks, and Launching Programs 407

If you want to start an external program from your Python script, pass
the program’s filename to subprocess.Popen(). (On Windows, right-click the
application’s Start menu item and select Properties to view the application’s
filename. On macOS, ctrl-click the application and select Show Package
Contents to find the path to the executable file.) The Popen() function will
then immediately return. Keep in mind that the launched program is not
run in the same thread as your Python program.

On a Windows computer, enter the following into the interactive shell:

>>> import subprocess
>>> subprocess.Popen('C:\\Windows\\System32\\calc.exe')
<subprocess.Popen object at 0x0000000003055A58>

On Ubuntu Linux, you would enter the following:

>>> import subprocess
>>> subprocess.Popen('/snap/bin/gnome-calculator')
<subprocess.Popen object at 0x7f2bcf93b20>

On macOS, the process is slightly different. See “Opening Files with
Default Applications” on page 409.

The return value is a Popen object, which has two useful methods: poll()
and wait().

You can think of the poll() method as asking your driver “Are we there
yet?” over and over until you arrive. The poll() method will return None if
the process is still running at the time poll() is called. If the program has
terminated, it will return the process’s integer exit code. An exit code is used
to indicate whether the process terminated without errors (an exit code
of 0) or whether an error caused the process to terminate (a nonzero exit
code—generally 1, but it may vary depending on the program).

The wait() method is like waiting until the driver has arrived at your
destination. The wait() method will block until the launched process has
terminated. This is helpful if you want your program to pause until the user
finishes with the other program. The return value of wait() is the process’s
integer exit code.

On Windows, enter the following into the interactive shell. Note that
the wait() call will block until you quit the launched MS Paint program.

>>> import subprocess
u >>> paintProc = subprocess.Popen('c:\\Windows\\System32\\mspaint.exe')
v >>> paintProc.poll() == None

True
w >>> paintProc.wait() # Doesn't return until MS Paint closes.

0
>>> paintProc.poll()
0

408 Chapter 17

Here we open an MS Paint process u. While it’s still running, we
check whether poll() returns None v. It should, as the process is still
running. Then we close the MS Paint program and call wait() on the
terminated process w. Now wait() and poll()return 0, indicating that
the process terminated without errors.

N O T E 	 Unlike mspaint.exe, if you run calc.exe on Windows 10 using subprocess.Popen(),
you’ll notice that wait() instantly returns even though the calculator app is still run-
ning. This is because calc.exe launches the calculator app and then instantly closes
itself. Windows’ calculator program is a “Trusted Microsoft Store app,” and its spe-
cifics are beyond the scope of this book. Suffice it to say, programs can run in many
application- and operating system–specific ways.

Passing Command Line Arguments to the Popen() Function
You can pass command line arguments to processes you create with Popen().
To do so, you pass a list as the sole argument to Popen(). The first string in
this list will be the executable filename of the program you want to launch;
all the subsequent strings will be the command line arguments to pass to
the program when it starts. In effect, this list will be the value of sys.argv
for the launched program.

Most applications with a graphical user interface (GUI) don’t use
command line arguments as extensively as command line–based or terminal-​
based programs do. But most GUI applications will accept a single argument
for a file that the applications will immediately open when they start. For
example, if you’re using Windows, create a simple text file called C:\Users​
\Al\hello.txt and then enter the following into the interactive shell:

>>> subprocess.Popen(['C:\\Windows\\notepad.exe', 'C:\\Users\Al\\hello.txt'])
<subprocess.Popen object at 0x00000000032DCEB8>

This will not only launch the Notepad application but also have it
immediately open the C:\Users\Al\hello.txt file.

Task Scheduler, launchd, and cron
If you are computer savvy, you may know about Task Scheduler on Windows,
launchd on macOS, or the cron scheduler on Linux. These well-documented
and reliable tools all allow you to schedule applications to launch at specific
times. If you’d like to learn more about them, you can find links to tutorials
at https://nostarch.com/automatestuff2/.

Using your operating system’s built-in scheduler saves you from writing
your own clock-checking code to schedule your programs. However, use
the time.sleep() function if you just need your program to pause briefly. Or
instead of using the operating system’s scheduler, your code can loop until
a certain date and time, calling time.sleep(1) each time through the loop.

Keeping Time, Scheduling Tasks, and Launching Programs 409

Opening Websites with Python
The webbrowser.open() function can launch a web browser from your pro-
gram to a specific website, rather than opening the browser application
with subprocess.Popen(). See “Project: mapIt.py with the webbrowser Module”
on page 268 for more details.

Running Other Python Scripts
You can launch a Python script from Python just like any other application.
Simply pass the python.exe executable to Popen() and the filename of the .py
script you want to run as its argument. For example, the following would
run the hello.py script from Chapter 1:

>>> subprocess.Popen(['C:\\Users\\<YOUR USERNAME>\\AppData\\Local\\Programs\\
Python\\Python38\\python.exe', 'hello.py'])
<subprocess.Popen object at 0x000000000331CF28>

Pass Popen() a list containing a string of the Python executable’s path
and a string of the script’s filename. If the script you’re launching needs
command line arguments, add them to the list after the script’s filename.
The location of the Python executable on Windows is C:\Users\<YOUR
USERNAME>\AppData\Local\Programs\Python\Python38\python.exe. On
macOS, it is /Library/Frameworks/Python.framework/Versions/3.8/bin/python3.
On Linux, it is /usr/bin/python3.8.

Unlike importing the Python program as a module, when your Python
program launches another Python program, the two are run in separate
processes and will not be able to share each other’s variables.

Opening Files with Default Applications
Double-clicking a .txt file on your computer will automatically launch the
application associated with the .txt file extension. Your computer will have
several of these file extension associations set up already. Python can also
open files this way with Popen().

Each operating system has a program that performs the equivalent of
double-clicking a document file to open it. On Windows, this is the start
program. On macOS, this is the open program. On Ubuntu Linux, this
is the see program. Enter the following into the interactive shell, passing
'start', 'open', or 'see' to Popen() depending on your system:

>>> fileObj = open('hello.txt', 'w')
>>> fileObj.write('Hello, world!')
12
>>> fileObj.close()
>>> import subprocess
>>> subprocess.Popen(['start', 'hello.txt'], shell=True)

410 Chapter 17

Here we write Hello, world! to a new hello.txt file. Then we call Popen(),
passing it a list containing the program name (in this example, 'start' for
Windows) and the filename. We also pass the shell=True keyword argument,
which is needed only on Windows. The operating system knows all of the
file associations and can figure out that it should launch, say, Notepad.exe to
handle the hello.txt file.

On macOS, the open program is used for opening both document files
and programs. Enter the following into the interactive shell if you have a Mac:

>>> subprocess.Popen(['open', '/Applications/Calculator.app/'])
<subprocess.Popen object at 0x10202ff98>

The Calculator app should open.

Project: Simple Countdown Program
Just like it’s hard to find a simple stopwatch application, it can be hard to
find a simple countdown application. Let’s write a countdown program that
plays an alarm at the end of the countdown.

At a high level, here’s what your program will do:

1.	 Count down from 60.

2.	 Play a sound file (alarm.wav) when the countdown reaches zero.

This means your code will need to do the following:

1.	 Pause for 1 second in between displaying each number in the count-
down by calling time.sleep().

2.	 Call subprocess.Popen() to open the sound file with the default application.

Open a new file editor tab and save it as countdown.py.

Step 1: Count Down
This program will require the time module for the time.sleep() function and
the subprocess module for the subprocess.Popen() function. Enter the follow-
ing code and save the file as countdown.py:

#! python3
countdown.py - A simple countdown script.

import time, subprocess

u timeLeft = 60
while timeLeft > 0:

 v print(timeLeft, end='')
 w time.sleep(1)

Keeping Time, Scheduling Tasks, and Launching Programs 411

 x timeLeft = timeLeft - 1

TODO: At the end of the countdown, play a sound file.

After importing time and subprocess, make a variable called timeLeft to
hold the number of seconds left in the countdown u. It can start at 60—or
you can change the value here to whatever you need, or even have it get set
from a command line argument.

In a while loop, you display the remaining count v, pause for 1 sec-
ond w, and then decrement the timeLeft variable x before the loop starts
over again. The loop will keep looping as long as timeLeft is greater than 0.
After that, the countdown will be over.

Step 2: Play the Sound File
While there are third-party modules to play sound files of various formats,
the quick and easy way is to just launch whatever application the user already
uses to play sound files. The operating system will figure out from the .wav
file extension which application it should launch to play the file. This .wav file
could easily be some other sound file format, such as .mp3 or .ogg.

You can use any sound file that is on your computer to play at the end
of the countdown, or you can download alarm.wav from https://nostarch.com
/automatestuff2/.

Add the following to your code:

#! python3
countdown.py - A simple countdown script.

import time, subprocess

--snip--

At the end of the countdown, play a sound file.
subprocess.Popen(['start', 'alarm.wav'], shell=True)

After the while loop finishes, alarm.wav (or the sound file you choose)
will play to notify the user that the countdown is over. On Windows, be
sure to include 'start' in the list you pass to Popen() and pass the keyword
argument shell=True. On macOS, pass 'open' instead of 'start' and remove
shell=True.

Instead of playing a sound file, you could save a text file somewhere with
a message like Break time is over! and use Popen() to open it at the end of the
countdown. This will effectively create a pop-up window with a message. Or
you could use the webbrowser.open() function to open a specific website at the
end of the countdown. Unlike some free countdown application you’d find
online, your own countdown program’s alarm can be anything you want!

http://autbor.com/alarm.wav
https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/

412 Chapter 17

Ideas for Similar Programs
A countdown is a simple delay before continuing the program’s execu-
tion. This can also be used for other applications and features, such as
the following:

•	 Use time.sleep() to give the user a chance to press ctrl-C to cancel an
action, such as deleting files. Your program can print a “Press ctrl-C to
cancel” message and then handle any KeyboardInterrupt exceptions with
try and except statements.

•	 For a long-term countdown, you can use timedelta objects to measure
the number of days, hours, minutes, and seconds until some point
(a birthday? an anniversary?) in the future.

Summary
The Unix epoch (January 1, 1970, at midnight, UTC) is a standard refer-
ence time for many programming languages, including Python. While the
time.time() function module returns an epoch timestamp (that is, a float
value of the number of seconds since the Unix epoch), the datetime module
is better for performing date arithmetic and formatting or parsing strings
with date information.

The time.sleep() function will block (that is, not return) for a certain
number of seconds. It can be used to add pauses to your program. But if
you want to schedule your programs to start at a certain time, the instruc-
tions at https://nostarch.com/automatestuff2/ can tell you how to use the sched-
uler already provided by your operating system.

The threading module is used to create multiple threads, which is useful
when you need to download multiple files or do other tasks simultaneously.
But make sure the thread reads and writes only local variables, or you might
run into concurrency issues.

Finally, your Python programs can launch other applications with the
subprocess.Popen() function. Command line arguments can be passed to the
Popen() call to open specific documents with the application. Alternatively,
you can use the start, open, or see program with Popen() to use your comput-
er’s file associations to automatically figure out which application to use to
open a document. By using the other applications on your computer, your
Python programs can leverage their capabilities for your automation needs.

Practice Questions

1.	 What is the Unix epoch?

2.	 What function returns the number of seconds since the Unix epoch?

3.	 How can you pause your program for exactly 5 seconds?

Keeping Time, Scheduling Tasks, and Launching Programs 413

4.	 What does the round() function return?

5.	 What is the difference between a datetime object and a timedelta object?

6.	 Using the datetime module, what day of the week was January 7, 2019?

7.	 Say you have a function named spam(). How can you call this function
and run the code inside it in a separate thread?

8.	 What should you do to avoid concurrency issues with multiple threads?

Practice Projects
For practice, write programs that do the following.

Prettified Stopwatch
Expand the stopwatch project from this chapter so that it uses the rjust()
and ljust() string methods to “prettify” the output. (These methods were
covered in Chapter 6.) Instead of output such as this:

Lap #1: 3.56 (3.56)
Lap #2: 8.63 (5.07)
Lap #3: 17.68 (9.05)
Lap #4: 19.11 (1.43)

. . . the output will look like this:

Lap # 1: 3.56 (3.56)
Lap # 2: 8.63 (5.07)
Lap # 3: 17.68 (9.05)
Lap # 4: 19.11 (1.43)

Note that you will need string versions of the lapNum, lapTime, and
totalTime integer and float variables in order to call the string methods
on them.

Next, use the pyperclip module introduced in Chapter 6 to copy the text
output to the clipboard so the user can quickly paste the output to a text
file or email.

Scheduled Web Comic Downloader
Write a program that checks the websites of several web comics and auto-
matically downloads the images if the comic was updated since the pro-
gram’s last visit. Your operating system’s scheduler (Scheduled Tasks on
Windows, launchd on macOS, and cron on Linux) can run your Python
program once a day. The Python program itself can download the comic
and then copy it to your desktop so that it is easy to find. This will free you
from having to check the website yourself to see whether it has updated.
(A list of web comics is available at https://nostarch.com/automatestuff2/.)

18
S E N D I N G E M A I L A N D

T E X T M E S S A G E S

Checking and replying to email is a huge
time sink. Of course, you can’t just write a

program to handle all your email for you,
since each message requires its own response.

But you can still automate plenty of email-related
tasks once you know how to write programs that can
send and receive email.

For example, maybe you have a spreadsheet full of customer records
and want to send each customer a different form letter depending on their
age and location details. Commercial software might not be able to do this
for you; fortunately, you can write your own program to send these emails,
saving yourself a lot of time copying and pasting form emails.

You can also write programs to send emails and SMS texts to notify you
of things even while you’re away from your computer. If you’re automating
a task that takes a couple of hours to do, you don’t want to go back to your
computer every few minutes to check on the program’s status. Instead, the
program can just text your phone when it’s done—freeing you to focus on
more important things while you’re away from your computer.

416 Chapter 18

This chapter features the EZGmail module, a simple way to send and
read emails from Gmail accounts, as well as a Python module for using the
standard SMTP and IMAP email protocols.

W A R N I N G 	 I highly recommend you set up a separate email account for any scripts that send or
receive emails. This will prevent bugs in your programs from affecting your personal
email account (by deleting emails or accidentally spamming your contacts, for example).
It’s a good idea to first do a dry run by commenting out the code that actually sends or
deletes emails and replacing it with a temporary print() call. This way you can test
your program before running it for real.

Sending and Receiving Email with the Gmail API
Gmail owns close to a third of the email client market share, and most likely
you have at least one Gmail email address. Because of additional security
and anti-spam measures, it is easier to control a Gmail account through
the EZGmail module than through smtplib and imapclient, discussed later in
this chapter. EZGmail is a module I wrote that works on top of the official
Gmail API and provides functions that make it easy to use Gmail from
Python. You can find full details on EZGmail at https://github.com/asweigart
/ezgmail/. EZGmail is not produced by or affiliated with Google; find the
official Gmail API documentation at https://developers.google.com/gmail/api
/v1/reference/.

To install EZGmail, run pip install --user --upgrade ezgmail on Windows
(or use pip3 on macOS and Linux). The --upgrade option will ensure that you
install the latest version of the package, which is necessary for interacting
with a constantly changing online service like the Gmail API.

Enabling the Gmail API
Before you write code, you must first sign up for a Gmail email account
at https://gmail.com/. Then, go to https://developers.google.com/gmail/api​
/quickstart/python/, click the Enable the Gmail API button on that page,
and fill out the form that appears.

After you’ve filled out the form, the page will present a link to the
credentials.json file, which you’ll need to download and place in the same
folder as your .py file. The credentials.json file contains the Client ID and
Client Secret information, which you should treat the same as your Gmail
password and not share with anyone else.

Then, in the interactive shell, enter the following code:

>>> import ezgmail, os
>>> os.chdir(r'C:\path\to\credentials_json_file')
>>> ezgmail.init()

Make sure you set your current working directory to the same folder
that credentials.json is in and that you’re connected to the internet. The
ezgmail.init() function will open your browser to a Google sign-in page.

https://github.com/asweigart/ezgmail/
https://github.com/asweigart/ezgmail/
https://developers.google.com/gmail/api/v1/reference/
https://developers.google.com/gmail/api/v1/reference/
https://developers.google.com/gmail/api/quickstart/python/
https://developers.google.com/gmail/api/quickstart/python/

Sending Email and Text Messages 417

Enter your Gmail address and password. The page may warn you “This app
isn’t verified,” but this is fine; click Advanced and then Go to Quickstart
(unsafe). (If you write Python scripts for others and don’t want this warn-
ing appearing for them, you’ll need to learn about Google’s app verifica-
tion process, which is beyond the scope of this book.) When the next page
prompts you with “Quickstart wants to access your Google Account,” click
Allow and then close the browser.

A token.json file will be generated to give your Python scripts access to
the Gmail account you entered. The browser will only open to the login
page if it can’t find an existing token.json file. With credentials.json and token​
.json, your Python scripts can send and read emails from your Gmail account
without requiring you to include your Gmail password in your source code.

Sending Mail from a Gmail Account
Once you have a token.json file, the EZGmail module should be able to send
email with a single function call:

>>> import ezgmail
>>> ezgmail.send('recipient@example.com', 'Subject line', 'Body of the email')

If you want to attach files to your email, you can provide an extra list
argument to the send() function:

>>> ezgmail.send('recipient@example.com', 'Subject line', 'Body of the email',
['attachment1.jpg', 'attachment2.mp3'])

Note that as part of its security and anti-spam features, Gmail might not
send repeated emails with the exact same text (since these are likely spam) or
emails that contain .exe or .zip file attachments (since they are likely viruses).

You can also supply the optional keyword arguments cc and bcc to send
carbon copies and blind carbon copies:

>>> import ezgmail
>>> ezgmail.send('recipient@example.com', 'Subject line', 'Body of the email',
cc='friend@example.com', bcc='otherfriend@example.com,someoneelse@example.com')

If you need to remember which Gmail address the token.json file is con-
figured for, you can examine ezgmail.EMAIL_ADDRESS. Note that this variable is
populated only after ezgmail.init() or any other EZGmail function is called:

>>> import ezgmail
>>> ezgmail.init()
>>> ezgmail.EMAIL_ADDRESS
'example@gmail.com'

Be sure to treat the token.json file the same as your password. If someone
else obtains this file, they can access your Gmail account (though they won’t
be able to change your Gmail password). To revoke previously issued token​
.json files, go to https://security.google.com/settings/security/permissions?pli=1/ and

418 Chapter 18

revoke access to the Quickstart app. You will need to run ezgmail.init() and
go through the login process again to obtain a new token.json file.

Reading Mail from a Gmail Account
Gmail organizes emails that are replies to each other into conversation
threads. When you log in to Gmail in your web browser or through an app,
you’re really looking at email threads rather than individual emails (even if
the thread has only one email in it).

EZGmail has GmailThread and GmailMessage objects to represent conversa-
tion threads and individual emails, respectively. A GmailThread object has a
messages attribute that holds a list of GmailMessage objects. The unread() func-
tion returns a list of GmailThread objects for all unread emails, which can
then be passed to ezgmail.summary() to print a summary of the conversation
threads in that list:

>>> import ezgmail
>>> unreadThreads = ezgmail.unread() # List of GmailThread objects.
>>> ezgmail.summary(unreadThreads)
Al, Jon - Do you want to watch RoboCop this weekend? - Dec 09
Jon - Thanks for stopping me from buying Bitcoin. - Dec 09

The summary() function is handy for displaying a quick summary of
the email threads, but to access specific messages (and parts of messages),
you’ll want to examine the messages attribute of the GmailThread object. The
messages attribute contains a list of the GmailMessage objects that make up the
thread, and these have subject, body, timestamp, sender, and recipient attri-
butes that describe the email:

>>> len(unreadThreads)
2
>>> str(unreadThreads[0])
"<GmailThread len=2 snippet= Do you want to watch RoboCop this weekend?'>"
>>> len(unreadThreads[0].messages)
2
>>> str(unreadThreads[0].messages[0])
"<GmailMessage from='Al Sweigart <al@inventwithpython.com>' to='Jon Doe
<example@gmail.com>' timestamp=datetime.datetime(2018, 12, 9, 13, 28, 48)
subject='RoboCop' snippet='Do you want to watch RoboCop this weekend?'>"
>>> unreadThreads[0].messages[0].subject
'RoboCop'
>>> unreadThreads[0].messages[0].body
'Do you want to watch RoboCop this weekend?\r\n'
>>> unreadThreads[0].messages[0].timestamp
datetime.datetime(2018, 12, 9, 13, 28, 48)
>>> unreadThreads[0].messages[0].sender
'Al Sweigart <al@inventwithpython.com>'
>>> unreadThreads[0].messages[0].recipient
'Jon Doe <example@gmail.com>'

Sending Email and Text Messages 419

Similar to the ezgmail.unread() function, the ezgmail.recent() function
will return the 25 most recent threads in your Gmail account. You can pass
an optional maxResults keyword argument to change this limit:

>>> recentThreads = ezgmail.recent()
>>> len(recentThreads)
25
>>> recentThreads = ezgmail.recent(maxResults=100)
>>> len(recentThreads)
46

Searching Mail from a Gmail Account
In addition to using ezgmail.unread() and ezgmail.recent(), you can search
for specific emails, the same way you would if you entered queries into the
https://gmail.com/ search box, by calling ezgmail.search():

>>> resultThreads = ezgmail.search('RoboCop')
>>> len(resultThreads)
1
>>> ezgmail.summary(resultThreads)
Al, Jon - Do you want to watch RoboCop this weekend? - Dec 09

The previous search() call should yield the same results as if you had
entered “RoboCop” into the search box, as in Figure 18-1.

Figure 18-1: Searching for “RoboCop” emails at the Gmail website

Like unread() and recent(), the search() function returns a list of
GmailThread objects. You can also pass any of the special search operators
that you can enter into the search box to the search() function, such as
the following:

'label:UNREAD'  For unread emails

'from:al@inventwithpython.com'  For emails from al@inventwithpython.com

'subject:hello'  For emails with “hello” in the subject

'has:attachment'  For emails with file attachments

You can view a full list of search operators at https://support.google.com
/mail/answer/7190?hl=en/.

Downloading Attachments from a Gmail Account
The GmailMessage objects have an attachments attribute that is a list of file-
names for the message’s attached files. You can pass any of these names to

https://support.google.com/mail/answer/7190?hl=en/
https://support.google.com/mail/answer/7190?hl=en/

420 Chapter 18

a GmailMessage object’s downloadAttachment() method to download the files.
You can also download all of them at once with downloadAllAttachments().
By default, EZGmail saves attachments to the current working direc-
tory, but you can pass an additional downloadFolder keyword argument to
downloadAttachment() and downloadAllAttachments() as well. For example:

>>> import ezgmail
>>> threads = ezgmail.search('vacation photos')
>>> threads[0].messages[0].attachments
['tulips.jpg', 'canal.jpg', 'bicycles.jpg']
>>> threads[0].messages[0].downloadAttachment('tulips.jpg')
>>> threads[0].messages[0].downloadAllAttachments(downloadFolder='vacat
ion2019')
['tulips.jpg', 'canal.jpg', 'bicycles.jpg']

If a file already exists with the attachment’s filename, the downloaded
attachment will automatically overwrite it.

EZGmail contains additional features, and you can find the full docu-
mentation at https://github.com/asweigart/ezgmail/.

SMTP
Much as HTTP is the protocol used by computers to send web pages across
the internet, Simple Mail Transfer Protocol (SMTP) is the protocol used for
sending email. SMTP dictates how email messages should be formatted,
encrypted, and relayed between mail servers and all the other details that
your computer handles after you click Send. You don’t need to know these
technical details, though, because Python’s smtplib module simplifies them
into a few functions.

SMTP just deals with sending emails to others. A different protocol,
called IMAP, deals with retrieving emails sent to you and is described in
“IMAP” on page 424.

In addition to SMTP and IMAP, most web-based email providers today
have other security measures in place to protect against spam, phishing,
and other malicious email usage. These measures prevent Python scripts
from logging in to an email account with the smtplib and imapclient modules.
However, many of these services have APIs and specific Python modules
that allow scripts to access them. This chapter covers Gmail’s module. For
others, you’ll need to consult their online documentation.

Sending Email
You may be familiar with sending emails from Outlook or Thunderbird
or through a website such as Gmail or Yahoo Mail. Unfortunately, Python
doesn’t offer you a nice graphical user interface like those services. Instead,
you call functions to perform each major step of SMTP, as shown in the fol-
lowing interactive shell example.

Sending Email and Text Messages 421

N O T E 	 Don’t enter this example in the interactive shell; it won’t work, because smtp.example​
.com, bob@example.com, MY_SECRET_PASSWORD, and alice@example.com
are just placeholders. This code is just an overview of the process of sending email
with Python.

>>> import smtplib
>>> smtpObj = smtplib.SMTP('smtp.example.com', 587)
>>> smtpObj.ehlo()
(250, b'mx.example.com at your service, [216.172.148.131]\nSIZE 35882577\
n8BITMIME\nSTARTTLS\nENHANCEDSTATUSCODES\nCHUNKING')
>>> smtpObj.starttls()
(220, b'2.0.0 Ready to start TLS')
>>> smtpObj.login('bob@example.com', 'MY_SECRET_PASSWORD')
(235, b'2.7.0 Accepted')
>>> smtpObj.sendmail('bob@example.com', 'alice@example.com', 'Subject: So
long.\nDear Alice, so long and thanks for all the fish. Sincerely, Bob')
{}
>>> smtpObj.quit()
(221, b'2.0.0 closing connection ko10sm23097611pbd.52 - gsmtp')

In the following sections, we’ll go through each step, replacing the
placeholders with your information to connect and log in to an SMTP
server, send an email, and disconnect from the server.

Connecting to an SMTP Server
If you’ve ever set up Thunderbird, Outlook, or another program to con-
nect to your email account, you may be familiar with configuring the SMTP
server and port. These settings will be different for each email provider, but
a web search for <your provider> smtp settings should turn up the server and
port to use.

The domain name for the SMTP server will usually be the name of
your email provider’s domain name, with smtp. in front of it. For example,
Verizon’s SMTP server is at smtp.verizon.net. Table 18-1 lists some common
email providers and their SMTP servers. (The port is an integer value and will
almost always be 587. It’s used by the command encryption standard, TLS.)

Table 18-1: Email Providers and Their SMTP Servers

Provider SMTP server domain name

Gmail* smtp.gmail.com

Outlook.com/Hotmail.com* smtp-mail.outlook.com

Yahoo Mail* smtp.mail.yahoo.com

AT&T smpt.mail.att.net (port 465)

Comcast smtp.comcast.net

Verizon smtp.verizon.net (port 465)
*Additional security measures prevent Python from being able to log in to
these servers with the smtplib module. The EZGmail module can bypass this
difficulty for Gmail accounts.

422 Chapter 18

Once you have the domain name and port information for your email
provider, create an SMTP object by calling smptlib.SMTP(), passing the domain
name as a string argument, and passing the port as an integer argument.
The SMTP object represents a connection to an SMTP mail server and has
methods for sending emails. For example, the following call creates an
SMTP object for connecting to an imaginary email server:

>>> smtpObj = smtplib.SMTP('smtp.example.com', 587)
>>> type(smtpObj)
<class 'smtplib.SMTP'>

Entering type(smtpObj) shows you that there’s an SMTP object stored in
smtpObj. You’ll need this SMTP object in order to call the methods that log you
in and send emails. If the smptlib.SMTP() call is not successful, your SMTP
server might not support TLS on port 587. In this case, you will need to
create an SMTP object using smtplib.SMTP_SSL() and port 465 instead.

>>> smtpObj = smtplib.SMTP_SSL('smtp.example.com', 465)

N O T E 	 If you are not connected to the internet, Python will raise a socket.gaierror: [Errno
11004] getaddrinfo failed or similar exception.

For your programs, the differences between TLS and SSL aren’t impor-
tant. You only need to know which encryption standard your SMTP server
uses so you know how to connect to it. In all of the interactive shell examples
that follow, the smtpObj variable will contain an SMTP object returned by the
smtplib.SMTP() or smtplib.SMTP_SSL() function.

Sending the SMTP “Hello” Message
Once you have the SMTP object, call its oddly named ehlo() method to “say
hello” to the SMTP email server. This greeting is the first step in SMTP and
is important for establishing a connection to the server. You don’t need to
know the specifics of these protocols. Just be sure to call the ehlo() method
first thing after getting the SMTP object or else the later method calls will result
in errors. The following is an example of an ehlo() call and its return value:

>>> smtpObj.ehlo()
(250, b'mx.example.com at your service, [216.172.148.131]\nSIZE 35882577\
n8BITMIME\nSTARTTLS\nENHANCEDSTATUSCODES\nCHUNKING')

If the first item in the returned tuple is the integer 250 (the code for
“success” in SMTP), then the greeting succeeded.

Starting TLS Encryption
If you are connecting to port 587 on the SMTP server (that is, you’re using
TLS encryption), you’ll need to call the starttls() method next. This required

Sending Email and Text Messages 423

step enables encryption for your connection. If you are connecting to port 465
(using SSL), then encryption is already set up, and you should skip this step.

Here’s an example of the starttls() method call:

>>> smtpObj.starttls()
(220, b'2.0.0 Ready to start TLS')

The starttls() method puts your SMTP connection in TLS mode. The
220 in the return value tells you that the server is ready.

Logging In to the SMTP Server
Once your encrypted connection to the SMTP server is set up, you can log
in with your username (usually your email address) and email password by
calling the login() method.

>>> smtpObj.login('my_email_address@example.com', 'MY_SECRET_PASSWORD')
(235, b'2.7.0 Accepted')

Pass a string of your email address as the first argument and a string
of your password as the second argument. The 235 in the return value
means authentication was successful. Python raises an smtplib.SMTP​
AuthenticationError exception for incorrect passwords.

W A R N I N G 	 Be careful about putting passwords in your source code. If anyone ever copies your
program, they’ll have access to your email account! It’s a good idea to call input()
and have the user type in the password. It may be inconvenient to have to enter a
password each time you run your program, but this approach prevents you from leav-
ing your password in an unencrypted file on your computer where a hacker or laptop
thief could easily get it.

Sending an Email
Once you are logged in to your email provider’s SMTP server, you can call
the sendmail() method to actually send the email. The sendmail() method
call looks like this:

>>> smtpObj.sendmail('my_email_address@example.com', 'recipient@example.com',
'Subject: So long.\nDear Alice, so long and thanks for all the fish.
Sincerely, Bob')
{}

The sendmail() method requires three arguments:

•	 Your email address as a string (for the email’s “from” address)

•	 The recipient’s email address as a string, or a list of strings for multiple
recipients (for the “to” address)

•	 The email body as a string

424 Chapter 18

The start of the email body string must begin with 'Subject: \n' for the
subject line of the email. The '\n' newline character separates the subject
line from the main body of the email.

The return value from sendmail() is a dictionary. There will be one key-
value pair in the dictionary for each recipient for whom email delivery failed.
An empty dictionary means all recipients were successfully sent the email.

Disconnecting from the SMTP Server
Be sure to call the quit() method when you are done sending emails. This
will disconnect your program from the SMTP server.

>>> smtpObj.quit()
(221, b'2.0.0 closing connection ko10sm23097611pbd.52 - gsmtp')

The 221 in the return value means the session is ending.
To review all the steps for connecting and logging in to the server, send-

ing email, and disconnecting, see “Sending Email” on page 420.

IMAP
Just as SMTP is the protocol for sending email, the Internet Message Access
Protocol (IMAP) specifies how to communicate with an email provider’s
server to retrieve emails sent to your email address. Python comes with an
imaplib module, but in fact the third-party imapclient module is easier to
use. This chapter provides an introduction to using IMAPClient; the full
documentation is at https://imapclient.readthedocs.io/.

The imapclient module downloads emails from an IMAP server in a
rather complicated format. Most likely, you’ll want to convert them from
this format into simple string values. The pyzmail module does the hard job
of parsing these email messages for you. You can find the complete docu-
mentation for PyzMail at https://www.magiksys.net/pyzmail/.

Install imapclient and pyzmail from a Terminal window with pip install
--user -U imapclient==2.1.0 and pip install --user -U pyzmail36== 1.0.4 on
Windows (or using pip3 on macOS and Linux). Appendix A has steps on
how to install third-party modules.

Retrieving and Deleting Emails with IMAP
Finding and retrieving an email in Python is a multistep process that
requires both the imapclient and pyzmail third-party modules. Just to give
you an overview, here’s a full example of logging in to an IMAP server,
searching for emails, fetching them, and then extracting the text of the
email messages from them.

>>> import imapclient
>>> imapObj = imapclient.IMAPClient('imap.example.com', ssl=True)
>>> imapObj.login('my_email_address@example.com', 'MY_SECRET_PASSWORD')

Sending Email and Text Messages 425

'my_email_address@example.com Jane Doe authenticated (Success)'
>>> imapObj.select_folder('INBOX', readonly=True)
>>> UIDs = imapObj.search(['SINCE 05-Jul-2019'])
>>> UIDs
[40032, 40033, 40034, 40035, 40036, 40037, 40038, 40039, 40040, 40041]
>>> rawMessages = imapObj.fetch([40041], ['BODY[]', 'FLAGS'])
>>> import pyzmail
>>> message = pyzmail.PyzMessage.factory(rawMessages[40041][b'BODY[]'])
>>> message.get_subject()
'Hello!'
>>> message.get_addresses('from')
[('Edward Snowden', 'esnowden@nsa.gov')]
>>> message.get_addresses('to')
[('Jane Doe', 'jdoe@example.com')]
>>> message.get_addresses('cc')
[]
>>> message.get_addresses('bcc')
[]
>>> message.text_part != None
True
>>> message.text_part.get_payload().decode(message.text_part.charset)
'Follow the money.\r\n\r\n-Ed\r\n'
>>> message.html_part != None
True
>>> message.html_part.get_payload().decode(message.html_part.charset)
'<div dir="ltr"><div>So long, and thanks for all the fish!

</div>-
Al
</div>\r\n'
>>> imapObj.logout()

You don’t have to memorize these steps. After we go through each step
in detail, you can come back to this overview to refresh your memory.

Connecting to an IMAP Server
Just like you needed an SMTP object to connect to an SMTP server and send
email, you need an IMAPClient object to connect to an IMAP server and
receive email. First you’ll need the domain name of your email provider’s
IMAP server. This will be different from the SMTP server’s domain name.
Table 18-2 lists the IMAP servers for several popular email providers.

Table 18-2: Email Providers and Their IMAP Servers

Provider IMAP server domain name

Gmail* imap.gmail.com

Outlook.com/Hotmail.com* imap-mail.outlook.com

Yahoo Mail* imap.mail.yahoo.com

AT&T imap.mail.att.net

Comcast imap.comcast.net

Verizon incoming.verizon.net
*Additional security measures prevent Python from being able to log in to these
servers with the imapclient module.

426 Chapter 18

Once you have the domain name of the IMAP server, call the imapclient
.IMAPClient() function to create an IMAPClient object. Most email providers
require SSL encryption, so pass the ssl=True keyword argument. Enter the
following into the interactive shell (using your provider’s domain name):

>>> import imapclient
>>> imapObj = imapclient.IMAPClient('imap.example.com', ssl=True)

In all of the interactive shell examples in the following sections, the
imapObj variable contains an IMAPClient object returned from the imapclient
.IMAPClient() function. In this context, a client is the object that connects
to the server.

Logging In to the IMAP Server
Once you have an IMAPClient object, call its login() method, passing in the
username (this is usually your email address) and password as strings.

>>> imapObj.login('my_email_address@example.com', 'MY_SECRET_PASSWORD')
'my_email_address@example.com Jane Doe authenticated (Success)'

W A R N I N G 	 Remember to never write a password directly into your code! Instead, design your pro-
gram to accept the password returned from input().

If the IMAP server rejects this username/password combination,
Python raises an imaplib.error exception.

Searching for Email
Once you’re logged on, actually retrieving an email that you’re interested
in is a two-step process. First, you must select a folder you want to search
through. Then, you must call the IMAPClient object’s search() method, pass-
ing in a string of IMAP search keywords.

Selecting a Folder

Almost every account has an INBOX folder by default, but you can also get a
list of folders by calling the IMAPClient object’s list_folders() method. This
returns a list of tuples. Each tuple contains information about a single
folder. Continue the interactive shell example by entering the following:

>>> import pprint
>>> pprint.pprint(imapObj.list_folders())
[(('\\HasNoChildren',), '/', 'Drafts'),

Sending Email and Text Messages 427

 (('\\HasNoChildren',), '/', 'Filler'),
 (('\\HasNoChildren',), '/', 'INBOX'),
 (('\\HasNoChildren',), '/', 'Sent'),
--snip--
 (('\\HasNoChildren', '\\Flagged'), '/', 'Starred'),
 (('\\HasNoChildren', '\\Trash'), '/', 'Trash')]

The three values in each of the tuples—for example, (('\\
HasNoChildren',), '/', 'INBOX')—are as follows:

•	 A tuple of the folder’s flags. (Exactly what these flags represent is
beyond the scope of this book, and you can safely ignore this field.)

•	 The delimiter used in the name string to separate parent folders
and subfolders.

•	 The full name of the folder.

To select a folder to search through, pass the folder’s name as a string
into the IMAPClient object’s select_folder() method.

>>> imapObj.select_folder('INBOX', readonly=True)

You can ignore select_folder()’s return value. If the selected folder does
not exist, Python raises an imaplib.error exception.

The readonly=True keyword argument prevents you from accidentally
making changes or deletions to any of the emails in this folder during the
subsequent method calls. Unless you want to delete emails, it’s a good idea
to always set readonly to True.

Performing the Search

With a folder selected, you can now search for emails with the IMAPClient
object’s search() method. The argument to search() is a list of strings, each
formatted to the IMAP’s search keys. Table 18-3 describes the various
search keys.

Note that some IMAP servers may have slightly different implementa-
tions for how they handle their flags and search keys. It may require some
experimentation in the interactive shell to see exactly how they behave.

You can pass multiple IMAP search key strings in the list argument to
the search() method. The messages returned are the ones that match all the
search keys. If you want to match any of the search keys, use the OR search
key. For the NOT and OR search keys, one and two complete search keys follow
the NOT and OR, respectively.

428 Chapter 18

Table 18-3: IMAP Search Keys

Search key Meaning

'ALL' Returns all messages in the folder. You may run into imaplib size
limits if you request all the messages in a large folder. See “Size
Limits” on page 429.

'BEFORE date',
'ON date',
'SINCE date'

These three search keys return, respectively, messages that
were received by the IMAP server before, on, or after the given
date. The date must be formatted like 05-Jul-2019. Also, while
'SINCE 05-Jul-2019' will match messages on and after July 5,
'BEFORE 05-Jul-2019' will match only messages before July 5 but
not on July 5 itself.

'SUBJECT string',
'BODY string',
'TEXT string'

Returns messages where string is found in the subject, body, or
either, respectively. If string has spaces in it, then enclose it with
double quotes: 'TEXT "search with spaces"'.

'FROM string',
'TO string',
'CC string',
'BCC string'

Returns all messages where string is found in the “from”
email address, “to” addresses, “cc” (carbon copy) addresses,
or “bcc” (blind carbon copy) addresses, respectively. If there
are multiple email addresses in string, then separate them with
spaces and enclose them all with double quotes: 'CC "firstcc@
example.com secondcc@example.com"'.

'SEEN',
'UNSEEN'

Returns all messages with and without the \Seen flag, respectively.
An email obtains the \Seen flag if it has been accessed with
a fetch() method call (described later) or if it is clicked when
you’re checking your email in an email program or web browser.
It’s more common to say the email has been “read” rather than
“seen,” but they mean the same thing.

'ANSWERED',
'UNANSWERED'

Returns all messages with and without the \Answered flag, respec-
tively. A message obtains the \Answered flag when it is replied to.

'DELETED',
'UNDELETED'

Returns all messages with and without the \Deleted flag, respec-
tively. Email messages deleted with the delete_messages() method
are given the \Deleted flag but are not permanently deleted
until the expunge() method is called (see “Deleting Emails” on
page 432). Note that some email providers automatically
expunge emails.

'DRAFT',
'UNDRAFT'

Returns all messages with and without the \Draft flag, respectively.
Draft messages are usually kept in a separate Drafts folder rather
than in the INBOX folder.

'FLAGGED',
'UNFLAGGED'

Returns all messages with and without the \Flagged flag,
respectively. This flag is usually used to mark email messages
as “Important” or “Urgent.”

'LARGER N',
'SMALLER N'

Returns all messages larger or smaller than N bytes, respectively.

'NOT search-key' Returns the messages that search-key would not have returned.
'OR search-key1
search-key2'

Returns the messages that match either the first or second
search-key.

Sending Email and Text Messages 429

Here are some example search() method calls along with their meanings:

imapObj.search(['ALL'])  Returns every message in the currently
selected folder.

imapObj.search(['ON 05-Jul-2019'])  Returns every message sent on
July 5, 2019.

imapObj.search(['SINCE 01-Jan-2019', 'BEFORE 01-Feb-2019', 'UNSEEN']) 
Returns every message sent in January 2019 that is unread. (Note that
this means on and after January 1 and up to but not including February 1.)

imapObj.search(['SINCE 01-Jan-2019', 'FROM alice@example.com'])  Returns
every message from alice@example.com sent since the start of 2019.

imapObj.search(['SINCE 01-Jan-2019', 'NOT FROM alice@example.com']) 
Returns every message sent from everyone except alice@example.com
since the start of 2019.

imapObj.search(['OR FROM alice@example.com FROM bob@example.com']) 
Returns every message ever sent from alice@example.com or
bob@example.com.

imapObj.search(['FROM alice@example.com', 'FROM bob@example.com']) 
Trick example! This search never returns any messages, because
messages must match all search keywords. Since there can be only
one “from” address, it is impossible for a message to be from both
alice@example.com and bob@example.com.

The search() method doesn’t return the emails themselves but rather
unique IDs (UIDs) for the emails, as integer values. You can then pass these
UIDs to the fetch() method to obtain the email content.

Continue the interactive shell example by entering the following:

>>> UIDs = imapObj.search(['SINCE 05-Jul-2019'])
>>> UIDs
[40032, 40033, 40034, 40035, 40036, 40037, 40038, 40039, 40040, 40041]

Here, the list of message IDs (for messages received July 5 onward)
returned by search() is stored in UIDs. The list of UIDs returned on your
computer will be different from the ones shown here; they are unique
to a particular email account. When you later pass UIDs to other func-
tion calls, use the UID values you received, not the ones printed in this
book’s examples.

Size Limits

If your search matches a large number of email messages, Python might
raise an exception that says imaplib.error: got more than 10000 bytes. When
this happens, you will have to disconnect and reconnect to the IMAP server
and try again.

430 Chapter 18

This limit is in place to prevent your Python programs from eating up
too much memory. Unfortunately, the default size limit is often too small.
You can change this limit from 10,000 bytes to 10,000,000 bytes by running
this code:

>>> import imaplib
>>> imaplib._MAXLINE = 10000000

This should prevent this error message from coming up again. You may
want to make these two lines part of every IMAP program you write.

Fetching an Email and Marking It as Read
Once you have a list of UIDs, you can call the IMAPClient object’s fetch()
method to get the actual email content.

The list of UIDs will be fetch()’s first argument. The second argument
should be the list ['BODY[]'], which tells fetch() to download all the body
content for the emails specified in your UID list.

Let’s continue our interactive shell example.

>>> rawMessages = imapObj.fetch(UIDs, ['BODY[]'])
>>> import pprint
>>> pprint.pprint(rawMessages)
{40040: {'BODY[]': 'Delivered-To: my_email_address@example.com\r\n'
 'Received: by 10.76.71.167 with SMTP id '
--snip--
 '\r\n'
 '------=_Part_6000970_707736290.1404819487066--\r\n',
 'SEQ': 5430}}

Import pprint and pass the return value from fetch(), stored in the vari-
able rawMessages, to pprint.pprint() to “pretty print” it, and you’ll see that
this return value is a nested dictionary of messages with UIDs as the keys.
Each message is stored as a dictionary with two keys: 'BODY[]' and 'SEQ'.
The 'BODY[]' key maps to the actual body of the email. The 'SEQ' key is for a
sequence number, which has a similar role to the UID. You can safely ignore it.

As you can see, the message content in the 'BODY[]' key is pretty unintel-
ligible. It’s in a format called RFC 822, which is designed for IMAP servers
to read. But you don’t need to understand the RFC 822 format; later in this
chapter, the pyzmail module will make sense of it for you.

When you selected a folder to search through, you called select_folder()
with the readonly=True keyword argument. Doing this prevents you from
accidentally deleting an email—but it also means that emails will not
get marked as read if you fetch them with the fetch() method. If you do
want emails to be marked as read when you fetch them, you’ll need to
pass readonly=False to select_folder(). If the selected folder is already in
read-only mode, you can reselect the current folder with another call to
select_folder(), this time with the readonly=False keyword argument:

>>> imapObj.select_folder('INBOX', readonly=False)

Sending Email and Text Messages 431

Getting Email Addresses from a Raw Message
The raw messages returned from the fetch() method still aren’t very useful
to people who just want to read their email. The pyzmail module parses
these raw messages and returns them as PyzMessage objects, which make
the subject, body, “To” field, “From” field, and other sections of the email
easily accessible to your Python code.

Continue the interactive shell example with the following (using UIDs
from your own email account, not the ones shown here):

>>> import pyzmail
>>> message = pyzmail.PyzMessage.factory(rawMessages[40041][b'BODY[]'])

First, import pyzmail. Then, to create a PyzMessage object of an email,
call the pyzmail.PyzMessage.factory() function and pass it the 'BODY[]' sec-
tion of the raw message. (Note that the b prefix means this is a bytes value,
not a string value. The difference isn’t too important; just remember to
include the b prefix in your code.) Store the result in message. Now message
contains a PyzMessage object, which has several methods that make it easy
to get the email’s subject line, as well as all sender and recipient addresses.
The get_subject() method returns the subject as a simple string value. The
get_addresses() method returns a list of addresses for the field you pass it.
For example, the method calls might look like this:

>>> message.get_subject()
'Hello!'
>>> message.get_addresses('from')
[('Edward Snowden', 'esnowden@nsa.gov')]
>>> message.get_addresses('to')
[('Jane Doe', 'my_email_address@example.com')]
>>> message.get_addresses('cc')
[]
>>> message.get_addresses('bcc')
[]

Notice that the argument for get_addresses() is 'from', 'to', 'cc', or
'bcc'. The return value of get_addresses() is a list of tuples. Each tuple con-
tains two strings: the first is the name associated with the email address,
and the second is the email address itself. If there are no addresses in the
requested field, get_addresses() returns a blank list. Here, the 'cc' carbon
copy and 'bcc' blind carbon copy fields both contained no addresses and
so returned empty lists.

Getting the Body from a Raw Message
Emails can be sent as plaintext, HTML, or both. Plaintext emails contain
only text, while HTML emails can have colors, fonts, images, and other fea-
tures that make the email message look like a small web page. If an email
is only plaintext, its PyzMessage object will have its html_part attributes set to
None. Likewise, if an email is only HTML, its PyzMessage object will have its
text_part attribute set to None.

432 Chapter 18

Otherwise, the text_part or html_part value will have a get_payload()
method that returns the email’s body as a value of the bytes data type. (The
bytes data type is beyond the scope of this book.) But this still isn’t a string
value that we can use. Ugh! The last step is to call the decode() method on
the bytes value returned by get_payload(). The decode() method takes one
argument: the message’s character encoding, stored in the text_part.charset
or html_part.charset attribute. This, finally, will return the string of the
email’s body.

Continue the interactive shell example by entering the following:

u >>> message.text_part != None
True
>>> message.text_part.get_payload().decode(message.text_part.charset)

v 'So long, and thanks for all the fish!\r\n\r\n-Al\r\n'
w >>> message.html_part != None

True
x >>> message.html_part.get_payload().decode(message.html_part.charset)

'<div dir="ltr"><div>So long, and thanks for all the fish!

</div>-Al

</div>\r\n'

The email we’re working with has both plaintext and HTML content, so
the PyzMessage object stored in message has text_part and html_part attributes
not equal to None u w. Calling get_payload() on the message’s text_part and
then calling decode() on the bytes value returns a string of the text version
of the email v. Using get_payload() and decode() with the message’s html_part
returns a string of the HTML version of the email x.

Deleting Emails
To delete emails, pass a list of message UIDs to the IMAPClient object’s
delete_messages() method. This marks the emails with the \Deleted flag.
Calling the expunge() method permanently deletes all emails with the
/Deleted flag in the currently selected folder. Consider the following
interactive shell example:

u >>> imapObj.select_folder('INBOX', readonly=False)
v >>> UIDs = imapObj.search(['ON 09-Jul-2019'])

>>> UIDs
[40066]
>>> imapObj.delete_messages(UIDs)

w {40066: ('\\Seen', '\\Deleted')}
>>> imapObj.expunge()
('Success', [(5452, 'EXISTS')])

Here we select the inbox by calling select_folder() on the IMAPClient
object and passing 'INBOX' as the first argument; we also pass the keyword
argument readonly=False so that we can delete emails u. We search the
inbox for messages received on a specific date and store the returned mes-
sage IDs in UIDs v. Calling delete_message() and passing it UIDs returns a
dictionary; each key-value pair is a message ID and a tuple of the message’s

Sending Email and Text Messages 433

flags, which should now include \Deleted w. Calling expunge() then perma-
nently deletes messages with the \Deleted flag and returns a success message
if there were no problems expunging the emails. Note that some email pro-
viders automatically expunge emails deleted with delete_messages() instead
of waiting for an expunge command from the IMAP client.

Disconnecting from the IMAP Server
When your program has finished retrieving or deleting emails, simply call
the IMAPClient’s logout() method to disconnect from the IMAP server.

>>> imapObj.logout()

If your program runs for several minutes or more, the IMAP server may
time out, or automatically disconnect. In this case, the next method call your
program makes on the IMAPClient object should raise an exception like the
following:

imaplib.abort: socket error: [WinError 10054] An existing connection was
forcibly closed by the remote host

In this event, your program will have to call imapclient.IMAPClient() to
connect again.

Whew! That’s it. There were a lot of hoops to jump through, but you
now have a way to get your Python programs to log in to an email account
and fetch emails. You can always consult the overview in “Retrieving and
Deleting Emails with IMAP” on page 424 whenever you need to remember
all of the steps.

Project: Sending Member Dues Reminder Emails
Say you have been “volunteered” to track member dues for the Mandatory
Volunteerism Club. This is a truly boring job, involving maintaining a spread-
sheet of everyone who has paid each month and emailing reminders to those
who haven’t. Instead of going through the spreadsheet yourself and copying
and pasting the same email to everyone who is behind on dues, let’s—you
guessed it—write a script that does this for you.

At a high level, here’s what your program will do:

1.	 Read data from an Excel spreadsheet.

2.	 Find all members who have not paid dues for the latest month.

3.	 Find their email addresses and send them personalized reminders.

This means your code will need to do the following:

1.	 Open and read the cells of an Excel document with the openpyxl
module. (See Chapter 13 for working with Excel files.)

2.	 Create a dictionary of members who are behind on their dues.

434 Chapter 18

3.	 Log in to an SMTP server by calling smtplib.SMTP(), ehlo(), starttls(),
and login().

4.	 For all members behind on their dues, send a personalized reminder
email by calling the sendmail() method.

Open a new file editor tab and save it as sendDuesReminders.py.

Step 1: Open the Excel File
Let’s say the Excel spreadsheet you use to track membership dues payments
looks like Figure 18-2 and is in a file named duesRecords.xlsx. You can down-
load this file from https://nostarch.com/automatestuff2/.

Figure 18-2: The spreadsheet for tracking member dues payments

This spreadsheet has every member’s name and email address. Each
month has a column tracking members’ payment statuses. The cell for
each member is marked with the text paid once they have paid their dues.

The program will have to open duesRecords.xlsx and figure out the col-
umn for the latest month by reading the sheet.max_column attribute. (You can
consult Chapter 13 for more information on accessing cells in Excel spread-
sheet files with the openpyxl module.) Enter the following code into the file
editor tab:

#! python3
sendDuesReminders.py - Sends emails based on payment status in spreadsheet.

import openpyxl, smtplib, sys

Open the spreadsheet and get the latest dues status.
u wb = openpyxl.load_workbook('duesRecords.xlsx')
v sheet = wb.get_sheet_by_name('Sheet1')

Sending Email and Text Messages 435

w lastCol = sheet.max_column
x latestMonth = sheet.cell(row=1, column=lastCol).value

TODO: Check each member's payment status.

TODO: Log in to email account.

TODO: Send out reminder emails.

After importing the openpyxl, smtplib, and sys modules, we open our
duesRecords.xlsx file and store the resulting Workbook object in wb u. Then we
get Sheet 1 and store the resulting Worksheet object in sheet v. Now that we
have a Worksheet object, we can access rows, columns, and cells. We store the
highest column in lastCol w, and we then use row number 1 and lastCol to
access the cell that should hold the most recent month. We get the value in
this cell and store it in latestMonth x.

Step 2: Find All Unpaid Members
Once you’ve determined the column number of the latest month (stored
in lastCol), you can loop through all rows after the first row (which has
the column headers) to see which members have the text paid in the
cell for that month’s dues. If the member hasn’t paid, you can grab the
member’s name and email address from columns 1 and 2, respectively.
This information will go into the unpaidMembers dictionary, which will track
all members who haven’t paid in the most recent month. Add the following
code to sendDuesReminder.py.

#! python3
sendDuesReminders.py - Sends emails based on payment status in spreadsheet.

--snip--

Check each member's payment status.
unpaidMembers = {}

u for r in range(2, sheet.max_row + 1):
 v payment = sheet.cell(row=r, column=lastCol).value

 if payment != 'paid':
 w name = sheet.cell(row=r, column=1).value
 x email = sheet.cell(row=r, column=2).value
 y unpaidMembers[name] = email

This code sets up an empty dictionary unpaidMembers and then loops
through all the rows after the first u. For each row, the value in the most
recent column is stored in payment v. If payment is not equal to 'paid', then
the value of the first column is stored in name w, the value of the second col-
umn is stored in email x, and name and email are added to unpaidMembers y.

436 Chapter 18

Step 3: Send Customized Email Reminders
Once you have a list of all unpaid members, it’s time to send them email
reminders. Add the following code to your program, except with your real
email address and provider information:

#! python3
sendDuesReminders.py - Sends emails based on payment status in spreadsheet.

--snip--

Log in to email account.
smtpObj = smtplib.SMTP('smtp.example.com', 587)
smtpObj.ehlo()
smtpObj.starttls()
smtpObj.login('my_email_address@example.com', sys.argv[1])

Create an SMTP object by calling smtplib.SMTP() and passing it the domain
name and port for your provider. Call ehlo() and starttls(), and then call
login() and pass it your email address and sys.argv[1], which will store your
password string. You’ll enter the password as a command line argument
each time you run the program, to avoid saving your password in your
source code.

Once your program has logged in to your email account, it should go
through the unpaidMembers dictionary and send a personalized email to each
member’s email address. Add the following to sendDuesReminders.py:

#! python3
sendDuesReminders.py - Sends emails based on payment status in spreadsheet.

--snip--

Send out reminder emails.
for name, email in unpaidMembers.items():

 u body = "Subject: %s dues unpaid.\nDear %s,\nRecords show that you have not
paid dues for %s. Please make this payment as soon as possible. Thank you!'" %
(latestMonth, name, latestMonth)

 v print('Sending email to %s...' % email)
 w sendmailStatus = smtpObj.sendmail('my_email_address@example.com', email,
body)

 x if sendmailStatus != {}:
 print('There was a problem sending email to %s: %s' % (email,
 sendmailStatus))
smtpObj.quit()

This code loops through the names and emails in unpaidMembers. For each
member who hasn’t paid, we customize a message with the latest month and
the member’s name, and store the message in body u. We print output saying
that we’re sending an email to this member’s email address v. Then we call
sendmail(), passing it the from address and the customized message w. We
store the return value in sendmailStatus.

Sending Email and Text Messages 437

Remember that the sendmail() method will return a nonempty dictionary
value if the SMTP server reported an error sending that particular email. The
last part of the for loop at x checks if the returned dictionary is nonempty
and, if it is, prints the recipient’s email address and the returned dictionary.

After the program is done sending all the emails, the quit() method is
called to disconnect from the SMTP server.

When you run the program, the output will look something like this:

Sending email to alice@example.com...
Sending email to bob@example.com...
Sending email to eve@example.com...

The recipients will receive an email about their missed payments that
looks just like an email you would have sent manually.

Sending Text Messages with SMS Email Gateways
People are more likely to be near their smartphones than their computers,
so text messages are often a more immediate and reliable way of sending
notifications than email. Also, text messages are usually shorter, making it
more likely that a person will get around to reading them.

The easiest, though not most reliable, way to send text messages is by
using an SMS (short message service) email gateway, an email server that a
cell phone provider set up to receive text via email and then forward to the
recipient as a text message.

You can write a program to send these emails using the ezgmail or
smtplib modules. The phone number and phone company’s email server
make up the recipient email address. The subject and body of the email
will be the body of the text message. For example, to send a text to the
phone number 415-555-1234, which is owned by a Verizon customer, you
would send an email to 4155551234@vtext.com.

You can find the SMS email gateway for a cell phone provider by doing
a web search for “sms email gateway provider name,” but Table 18-4 lists the
gateways for several popular providers. Many providers have separate email
servers for SMS , which limits messages to 160 characters, and MMS (mul-
timedia messaging service), which has no character limit. If you wanted to
send a photo, you would have to use the MMS gateway and attach the file
to the email.

If you don’t know the recipient’s cell phone provider, you can try using
a carrier lookup site, which should provide a phone number’s carrier. The
best way to find these sites is by searching the web for “find cell phone pro-
vider for number.” Many of these sites will let you look up numbers for free
(though will charge you if you need to look up hundreds or thousands of
phone numbers through their API).

438 Chapter 18

Table 18-4: SMS Email Gateways for Cell Phone Providers

Cell phone
provider

SMS gateway MMS gateway

AT&T number@txt.att.net number@mms.att.net

Boost Mobile number@sms.myboostmobile.com Same as SMS

Cricket number@sms.cricketwireless.net number@mms.cricketwireless.net

Google Fi number@msg.fi.google.com Same as SMS

Metro PCS number@mymetropcs.com Same as SMS

Republic
Wireless

number@text.republicwireless.com Same as SMS

Sprint number@messaging.sprintpcs.com number@pm.sprint.com

T-Mobile number@tmomail.net Same as SMS

U.S. Cellular number@email.uscc.net number@mms.uscc.net

Verizon number@vtext.com number@vzwpix.com

Virgin Mobile number@vmobl.com number@vmpix.com

XFinity Mobile number@vtext.com number@mypixmessages.com

While SMS email gateways are free and simple to use, there are several
major disadvantages to them:

•	 You have no guarantee that the text will arrive promptly, or at all.

•	 You have no way of knowing if the text failed to arrive.

•	 The text recipient has no way of replying.

•	 SMS gateways may block you if you send too many emails, and there’s
no way to find out how many is “too many.”

•	 Just because the SMS gateway delivers a text message today doesn’t
mean it will work tomorrow.

Sending texts via an SMS gateway is ideal when you need to send the
occasional, nonurgent message. If you need more reliable service, use a
non-email SMS gateway service, as described next.

Sending Text Messages with Twilio
In this section, you’ll learn how to sign up for the free Twilio service and use
its Python module to send text messages. Twilio is an SMS gateway service,
which means it allows you to send text messages from your programs via
the internet. Although the free trial account comes with a limited amount
of credit and the texts will be prefixed with the words Sent from a Twilio trial
account, this trial service is probably adequate for your personal programs.

But Twilio isn’t the only SMS gateway service. If you prefer not to use
Twilio, you can find alternative services by searching online for “free sms”
“gateway,” “python sms api,” or even “twilio alternatives.”

Sending Email and Text Messages 439

Before signing up for a Twilio account, install the twilio module with
pip install --user --upgrade twilio on Windows (or use pip3 on macOS and
Linux). Appendix A has more details about installing third-party modules.

N O T E 	 This section is specific to the United States. Twilio does offer SMS texting services for
countries other than the United States; see https://twilio.com/ for more information.
The twilio module and its functions will work the same outside the United States.

Signing Up for a Twilio Account
Go to https://twilio.com/ and fill out the sign-up form. Once you’ve signed
up for a new account, you’ll need to verify a mobile phone number that you
want to send texts to. Go to the Verified Caller IDs page and add a phone
number you have access to. Twilio will text a code to this number that you
must enter to verify the number. (This verification is necessary to prevent
people from using the service to spam random phone numbers with text
messages.) You will now be able to send texts to this phone number using
the twilio module.

Twilio provides your trial account with a phone number to use as the
sender of text messages. You will need two more pieces of information:
your account SID and the auth (authentication) token. You can find this
information on the Dashboard page when you are logged in to your Twilio
account. These values act as your Twilio username and password when log-
ging in from a Python program.

Sending Text Messages
Once you’ve installed the twilio module, signed up for a Twilio account, ver-
ified your phone number, registered a Twilio phone number, and obtained
your account SID and auth token, you will finally be ready to send yourself
text messages from your Python scripts.

Compared to all the registration steps, the actual Python code is fairly
simple. With your computer connected to the internet, enter the following
into the interactive shell, replacing the accountSID, authToken, myTwilioNumber,
and myCellPhone variable values with your real information:

u >>> from twilio.rest import Client
>>> accountSID = 'ACxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
>>> authToken = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'

v >>> twilioCli = Client(accountSID, authToken)
>>> myTwilioNumber = '+14955551234'
>>> myCellPhone = '+14955558888'

w >>> message = twilioCli.messages.create(body='Mr. Watson - Come here - I want
 to see you.', from_=myTwilioNumber, to=myCellPhone)

A few moments after typing the last line, you should receive a text
message that reads, Sent from your Twilio trial account - Mr. Watson - Come
here - I want to see you.

440 Chapter 18

Because of the way the twilio module is set up, you need to import it
using from twilio.rest import Client, not just import twilio u. Store your
account SID in accountSID and your auth token in authToken and then call
Client() and pass it accountSID and authToken. The call to Client() returns
a Client object v. This object has a messages attribute, which in turn has a
create() method you can use to send text messages. This is the method that
will instruct Twilio’s servers to send your text message. After storing your
Twilio number and cell phone number in myTwilioNumber and myCellPhone,
respectively, call create() and pass it keyword arguments specifying the
body of the text message, the sender’s number (myTwilioNumber), and the
recipient’s number (myCellPhone) w.

The Message object returned from the create() method will have infor-
mation about the text message that was sent. Continue the interactive shell
example by entering the following:

>>> message.to
'+14955558888'
>>> message.from_
'+14955551234'
>>> message.body
'Mr. Watson - Come here - I want to see you.'

The to, from_, and body attributes should hold your cell phone number,
Twilio number, and message, respectively. Note that the sending phone
number is in the from_ attribute—with an underscore at the end—not from.
This is because from is a keyword in Python (you’ve seen it used in the from
modulename import * form of import statement, for example), so it cannot be
used as an attribute name. Continue the interactive shell example with the
following:

>>> message.status
'queued'
>>> message.date_created
datetime.datetime(2019, 7, 8, 1, 36, 18)
>>> message.date_sent == None
True

The status attribute should give you a string. The date_created and
date_sent attributes should give you a datetime object if the message has
been created and sent. It may seem odd that the status attribute is set
to 'queued' and the date_sent attribute is set to None when you’ve already
received the text message. This is because you captured the Message object
in the message variable before the text was actually sent. You will need to
refetch the Message object in order to see its most up-to-date status and
date_sent. Every Twilio message has a unique string ID (SID) that can be
used to fetch the latest update of the Message object. Continue the inter
active shell example by entering the following:

>>> message.sid
'SM09520de7639ba3af137c6fcb7c5f4b51'

Sending Email and Text Messages 441

u >>> updatedMessage = twilioCli.messages.get(message.sid)
>>> updatedMessage.status
'delivered'
>>> updatedMessage.date_sent
datetime.datetime(2019, 7, 8, 1, 36, 18)

Entering message.sid shows you this message’s long SID. By passing this
SID to the Twilio client’s get() method u, you can retrieve a new Message
object with the most up-to-date information. In this new Message object, the
status and date_sent attributes are correct.

The status attribute will be set to one of the following string values:
'queued', 'sending', 'sent', 'delivered', 'undelivered', or 'failed'. These sta-
tuses are self-explanatory, but for more precise details, take a look at the
resources at https://nostarch.com/automatestuff2/.

Project: “Just Text Me” Module
The person you’ll most often text from your programs is probably you.
Texting is a great way to send yourself notifications when you’re away from
your computer. If you’ve automated a boring task with a program that takes
a couple of hours to run, you could have it notify you with a text when it’s
finished. Or you may have a regularly scheduled program running that
sometimes needs to contact you, such as a weather-checking program that
texts you a reminder to pack an umbrella.

As a simple example, here’s a small Python program with a textmyself()
function that sends a message passed to it as a string argument. Open a new
file editor tab and enter the following code, replacing the account SID, auth
token, and phone numbers with your own information. Save it as textMyself.py.

#! python3
textMyself.py - Defines the textmyself() function that texts a message
passed to it as a string.

Preset values:
accountSID = 'ACxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
authToken = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
myNumber = '+15559998888'
twilioNumber = '+15552225678'

R ECE I V ING T E X T ME SS AGE S W I T H PY T HON

Unfortunately, receiving text messages with Twilio is a bit more complicated
than sending them. Twilio requires that you have a website running its own web
application. That’s beyond the scope of these pages, but you can find more
details in this book’s online resources (https://nostarch.com/automatestuff2/).

442 Chapter 18

from twilio.rest import Client

u def textmyself(message):
 v twilioCli = Client(accountSID, authToken)
 w twilioCli.messages.create(body=message, from_=twilioNumber, to=myNumber)

This program stores an account SID, auth token, sending number,
and receiving number. It then defined textmyself() to take on argument u,
make a Client object v, and call create() with the message you passed w.

If you want to make the textmyself() function available to your other
programs, simply place the textMyself.py file in the same folder as your
Python script. Whenever you want one of your programs to text you,
just add the following:

import textmyself
textmyself.textmyself('The boring task is finished.')

You need to sign up for Twilio and write the texting code only once. After
that, it’s just two lines of code to send a text from any of your other programs.

Summary
We communicate with each other on the internet and over cell phone net-
works in dozens of different ways, but email and texting predominate. Your
programs can communicate through these channels, which gives them
powerful new notification features. You can even write programs running
on different computers that communicate with one another directly via
email, with one program sending emails with SMTP and the other retriev-
ing them with IMAP.

Python’s smtplib provides functions for using the SMTP to send emails
through your email provider’s SMTP server. Likewise, the third-party
imapclient and pyzmail modules let you access IMAP servers and retrieve
emails sent to you. Although IMAP is a bit more involved than SMTP, it’s
also quite powerful and allows you to search for particular emails, down-
load them, and parse them to extract the subject and body as string values.

As a security and spam precaution, some popular email services like
Gmail don’t allow you to use the standard SMTP and IMAP protocols to
access their services. The EZGmail module acts as a convenient wrapper
for the Gmail API, letting your Python scripts access your Gmail account.
I highly recommend that you set up a separate Gmail account for your
scripts to use so that potential bugs in your program don’t cause problems
for your personal Gmail account.

Texting is a bit different from email, since, unlike email, more than
just an internet connection is needed to send SMS texts. Fortunately, ser-
vices such as Twilio provide modules to allow you to send text messages
from your programs. Once you go through an initial setup process, you’ll
be able to send texts with just a couple lines of code.

With these modules in your skill set, you’ll be able to program the spe-
cific conditions under which your programs should send notifications or

Sending Email and Text Messages 443

reminders. Now your programs will have reach far beyond the computer
they’re running on!

Practice Questions

1.	 What is the protocol for sending email? For checking and receiving email?

2.	 What four smtplib functions/methods must you call to log in to an
SMTP server?

3.	 What two imapclient functions/methods must you call to log in to an
IMAP server?

4.	 What kind of argument do you pass to imapObj.search()?

5.	 What do you do if your code gets an error message that says got more
than 10000 bytes?

6.	 The imapclient module handles connecting to an IMAP server and find-
ing emails. What is one module that handles reading the emails that
imapclient collects?

7.	 When using the Gmail API, what are the credentials.json and token.json files?

8.	 In the Gmail API, what’s the difference between “thread” and
“message” objects?

9.	 Using ezgmail.search(), how can you find emails that have file
attachments?

10.	 What three pieces of information do you need from Twilio before
you can send text messages?

Practice Projects
For practice, write programs that do the following.

Random Chore Assignment Emailer
Write a program that takes a list of people’s email addresses and a list
of chores that need to be done and randomly assigns chores to people.
Email each person their assigned chores. If you’re feeling ambitious, keep
a record of each person’s previously assigned chores so that you can make
sure the program avoids assigning anyone the same chore they did last
time. For another possible feature, schedule the program to run once a
week automatically.

Here’s a hint: if you pass a list to the random.choice() function, it will
return a randomly selected item from the list. Part of your code could
look like this:

chores = ['dishes', 'bathroom', 'vacuum', 'walk dog']
randomChore = random.choice(chores)
chores.remove(randomChore) # this chore is now taken, so remove it

444 Chapter 18

Umbrella Reminder
Chapter 12 showed you how to use the requests module to scrape data from
https://weather.gov/. Write a program that runs just before you wake up in
the morning and checks whether it’s raining that day. If so, have the pro-
gram text you a reminder to pack an umbrella before leaving the house.

Auto Unsubscriber
Write a program that scans through your email account, finds all the
unsubscribe links in all your emails, and automatically opens them in a
browser. This program will have to log in to your email provider’s IMAP
server and download all of your emails. You can use Beautiful Soup (cov-
ered in Chapter 12) to check for any instance where the word unsubscribe
occurs within an HTML link tag.

Once you have a list of these URLs, you can use webbrowser.open() to
automatically open all of these links in a browser.

You’ll still have to manually go through and complete any additional
steps to unsubscribe yourself from these lists. In most cases, this involves
clicking a link to confirm.

But this script saves you from having to go through all of your emails
looking for unsubscribe links. You can then pass this script along to your
friends so they can run it on their email accounts. (Just make sure your
email password isn’t hardcoded in the source code!)

Controlling Your Computer Through Email
Write a program that checks an email account every 15 minutes for any
instructions you email it and executes those instructions automatically.
For example, BitTorrent is a peer-to-peer downloading system. Using free
BitTorrent software such as qBittorrent, you can download large media
files on your home computer. If you email the program a (completely legal,
not at all piratical) BitTorrent link, the program will eventually check its
email, find this message, extract the link, and then launch qBittorrent to
start downloading the file. This way, you can have your home computer
begin downloads while you’re away, and the (completely legal, not at all
piratical) download can be finished by the time you return home.

Chapter 17 covers how to launch programs on your computer using the
subprocess.Popen() function. For example, the following call would launch
the qBittorrent program, along with a torrent file:

qbProcess = subprocess.Popen(['C:\\Program Files (x86)\\qBittorrent\\
qbittorrent.exe', 'shakespeare_complete_works.torrent'])

Of course, you’ll want the program to make sure the emails come from
you. In particular, you might want to require that the emails contain a pass-
word, since it is fairly trivial for hackers to fake a “from” address in emails.
The program should delete the emails it finds so that it doesn’t repeat
instructions every time it checks the email account. As an extra feature,

Sending Email and Text Messages 445

have the program email or text you a confirmation every time it executes
a command. Since you won’t be sitting in front of the computer that is
running the program, it’s a good idea to use the logging functions (see
Chapter 11) to write a text file log that you can check if errors come up.

qBittorrent (as well as other BitTorrent applications) has a feature
where it can quit automatically after the download completes. Chapter 17
explains how you can determine when a launched application has quit with
the wait() method for Popen objects. The wait() method call will block until
qBittorrent has stopped, and then your program can email or text you a
notification that the download has completed.

There are a lot of possible features you could add to this project. If you
get stuck, you can download an example implementation of this program
from https://nostarch.com/automatestuff2/.

19
M A N I P U L A T I N G I M A G E S

If you have a digital camera or even if
you just upload photos from your phone

to Facebook, you probably cross paths with
digital image files all the time. You may know

how to use basic graphics software, such as Microsoft
Paint or Paintbrush, or even more advanced applica-
tions such as Adobe Photoshop. But if you need to
edit a massive number of images, editing them by
hand can be a lengthy, boring job.

Enter Python. Pillow is a third-party Python module for interacting
with image files. The module has several functions that make it easy to
crop, resize, and edit the content of an image. With the power to manipu-
late images the same way you would with software such as Microsoft Paint
or Adobe Photoshop, Python can automatically edit hundreds or thousands
of images with ease. You can install Pillow by running pip install --user -U
pillow==6.0.0. Appendix A has more details on installing modules.

448 Chapter 19

Computer Image Fundamentals
In order to manipulate an image, you need to understand the basics of
how computers deal with colors and coordinates in images and how you can
work with colors and coordinates in Pillow. But before you continue, install
the pillow module. See Appendix A for help installing third-party modules.

Colors and RGBA Values
Computer programs often represent a color in an image as an RGBA value.
An RGBA value is a group of numbers that specify the amount of red, green,
blue, and alpha (or transparency) in a color. Each of these component val-
ues is an integer from 0 (none at all) to 255 (the maximum). These RGBA
values are assigned to individual pixels; a pixel is the smallest dot of a single
color the computer screen can show (as you can imagine, there are millions
of pixels on a screen). A pixel’s RGB setting tells it precisely what shade of
color it should display. Images also have an alpha value to create RGBA
values. If an image is displayed on the screen over a background image
or desktop wallpaper, the alpha value determines how much of the back-
ground you can “see through” the image’s pixel.

In Pillow, RGBA values are represented by a tuple of four integer values.
For example, the color red is represented by (255, 0, 0, 255). This color has
the maximum amount of red, no green or blue, and the maximum alpha
value, meaning it is fully opaque. Green is represented by (0, 255, 0, 255),
and blue is (0, 0, 255, 255). White, the combination of all colors, is (255,
255, 255, 255), while black, which has no color at all, is (0, 0, 0, 255).

If a color has an alpha value of 0, it is invisible, and it doesn’t really
matter what the RGB values are. After all, invisible red looks the same as
invisible black.

Pillow uses the standard color names that HTML uses. Table 19-1 lists
a selection of standard color names and their values.

Table 19-1: Standard Color Names and Their RGBA Values

Name RGBA value Name RGBA value

White (255, 255, 255, 255) Red (255, 0, 0, 255)

Green (0, 128, 0, 255) Blue (0, 0, 255, 255)

Gray (128, 128, 128, 255) Yellow (255, 255, 0, 255)

Black (0, 0, 0, 255) Purple (128, 0, 128, 255)

Pillow offers the ImageColor.getcolor() function so you don’t have to
memorize RGBA values for the colors you want to use. This function takes
a color name string as its first argument, and the string 'RGBA' as its second
argument, and it returns an RGBA tuple.

Manipulating Images 449

To see how this function works, enter the following into the
interactive shell:

u >>> from PIL import ImageColor
v >>> ImageColor.getcolor('red', 'RGBA')

(255, 0, 0, 255)
w >>> ImageColor.getcolor('RED', 'RGBA')

(255, 0, 0, 255)
>>> ImageColor.getcolor('Black', 'RGBA')
(0, 0, 0, 255)
>>> ImageColor.getcolor('chocolate', 'RGBA')
(210, 105, 30, 255)
>>> ImageColor.getcolor('CornflowerBlue', 'RGBA')
(100, 149, 237, 255)

First, you need to import the ImageColor module from PIL u (not
from Pillow; you’ll see why in a moment). The color name string you pass
to ImageColor.getcolor() is case-insensitive, so passing 'red' v and passing
'RED' w give you the same RGBA tuple. You can also pass more unusual
color names, like 'chocolate' and 'Cornflower Blue'.

Pillow supports a huge number of color names, from 'aliceblue' to
'whitesmoke'. You can find the full list of more than 100 standard color
names in the resources at https://nostarch.com/automatestuff2/.

Coordinates and Box Tuples
Image pixels are addressed with x- and y-coordinates, which respectively
specify a pixel’s horizontal and vertical locations in an image. The origin is
the pixel at the top-left corner of the image and is specified with the nota-
tion (0, 0). The first zero represents the x-coordinate, which starts at zero
at the origin and increases going from left to right. The second zero rep-
resents the y-coordinate, which starts at zero at the origin and increases
going down the image. This bears repeating: y-coordinates increase going
downward, which is the opposite of how you may remember y-coordinates
being used in math class. Figure 19-1 demonstrates how this coordinate
system works.

x increases

y
in

cr
ea

se
s

(0,0)

(27,26)

Figure 19-1: The x- and y-coordinates of a 28×27 image
of some sort of ancient data storage device

450 Chapter 19

Many of Pillow’s functions and methods take a box tuple argument. This
means Pillow is expecting a tuple of four integer coordinates that represent
a rectangular region in an image. The four integers are, in order, as follows:

Left  The x-coordinate of the leftmost edge of the box.

Top  The y-coordinate of the top edge of the box.

Right  The x-coordinate of one pixel to the right of the rightmost edge
of the box. This integer must be greater than the left integer.

Bottom  The y-coordinate of one pixel lower than the bottom edge of
the box. This integer must be greater than the top integer.

Note that the box includes the left and top coordinates and goes up to
but does not include the right and bottom coordinates. For example, the box
tuple (3, 1, 9, 6) represents all the pixels in the black box in Figure 19-2.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Figure 19-2: The area represented
by the box tuple (3, 1, 9, 6)

Manipulating Images with Pillow
Now that you know how colors and coordinates work in Pillow, let’s use
Pillow to manipulate an image. Figure 19-3 is the image that will be used
for all the interactive shell examples in this chapter. You can download it
from https://nostarch.com/automatestuff2/.

Once you have the image file zophie.png in your current working direc-
tory, you’ll be ready to load the image of Zophie into Python, like so:

>>> from PIL import Image
>>> catIm = Image.open('zophie.png')

To load the image, import the Image module from Pillow and call Image​
.open(), passing it the image’s filename. You can then store the loaded image
in a variable like CatIm. Pillow’s module name is PIL to make it backward
compatible with an older module called Python Imaging Library; this is
why you must run from PIL import Image instead of from Pillow import Image.
Because of the way Pillow’s creators set up the pillow module, you must use
the import statement from PIL import Image, rather than simply import PIL.

Manipulating Images 451

Figure 19-3: My cat, Zophie. The camera
adds 10 pounds (which is a lot for a cat).

If the image file isn’t in the current working directory, change the
working directory to the folder that contains the image file by calling
the os.chdir() function.

>>> import os
>>> os.chdir('C:\\folder_with_image_file')

The Image.open() function returns a value of the Image object data type,
which is how Pillow represents an image as a Python value. You can load an
Image object from an image file (of any format) by passing the Image.open()
function a string of the filename. Any changes you make to the Image object
can be saved to an image file (also of any format) with the save() method.
All the rotations, resizing, cropping, drawing, and other image manipula-
tions will be done through method calls on this Image object.

To shorten the examples in this chapter, I’ll assume you’ve imported
Pillow’s Image module and that you have the Zophie image stored in a variable
named catIm. Be sure that the zophie.png file is in the current working direc-
tory so that the Image.open() function can find it. Otherwise, you will also have
to specify the full absolute path in the string argument to Image.open().

Working with the Image Data Type
An Image object has several useful attributes that give you basic information
about the image file it was loaded from: its width and height, the filename,
and the graphics format (such as JPEG, GIF, or PNG).

For example, enter the following into the interactive shell:

>>> from PIL import Image
>>> catIm = Image.open('zophie.png')

452 Chapter 19

>>> catIm.size
u (816, 1088)
v >>> width, height = catIm.size
w >>> width

816
x >>> height

1088
>>> catIm.filename
'zophie.png'
>>> catIm.format
'PNG'
>>> catIm.format_description
'Portable network graphics'

y >>> catIm.save('zophie.jpg')

After making an Image object from zophie.png and storing the Image
object in catIm, we can see that the object’s size attribute contains a tuple
of the image’s width and height in pixels u. We can assign the values in the
tuple to width and height variables v in order to access with width w and
height x individually. The filename attribute describes the original file’s
name. The format and format_description attributes are strings that describe
the image format of the original file (with format_description being a bit
more verbose).

Finally, calling the save() method and passing it 'zophie.jpg' saves a
new image with the filename zophie.jpg to your hard drive y. Pillow sees
that the file extension is .jpg and automatically saves the image using the
JPEG image format. Now you should have two images, zophie.png and zophie​
.jpg, on your hard drive. While these files are based on the same image,
they are not identical because of their different formats.

Pillow also provides the Image.new() function, which returns an Image
object—much like Image.open(), except the image represented by Image​
.new()’s object will be blank. The arguments to Image.new() are as follows:

•	 The string 'RGBA', which sets the color mode to RGBA. (There are other
modes that this book doesn’t go into.)

•	 The size, as a two-integer tuple of the new image’s width and height.

•	 The background color that the image should start with, as a four-integer
tuple of an RGBA value. You can use the return value of the ImageColor​
.getcolor() function for this argument. Alternatively, Image.new() also
supports just passing the string of the standard color name.

For example, enter the following into the interactive shell:

>>> from PIL import Image
u >>> im = Image.new('RGBA', (100, 200), 'purple')

>>> im.save('purpleImage.png')
v >>> im2 = Image.new('RGBA', (20, 20))

>>> im2.save('transparentImage.png')

Manipulating Images 453

Here we create an Image object for an image that’s 100 pixels wide and
200 pixels tall, with a purple background u. This image is then saved to
the file purpleImage.png. We call Image.new() again to create another Image
object, this time passing (20, 20) for the dimensions and nothing for the
background color v. Invisible black, (0, 0, 0, 0), is the default color used
if no color argument is specified, so the second image has a transparent
background; we save this 20×20 transparent square in transparentImage.png.

Cropping Images
Cropping an image means selecting a rectangular region inside an image
and removing everything outside the rectangle. The crop() method on
Image objects takes a box tuple and returns an Image object representing
the cropped image. The cropping does not happen in place—that is, the
original Image object is left untouched, and the crop() method returns a
new Image object. Remember that a boxed tuple—in this case, the cropped
section—includes the left column and top row of pixels but only goes up
to and does not include the right column and bottom row of pixels.

Enter the following into the interactive shell:

>>> from PIL import Image
>>> catIm = Image.open('zophie.png')
>>> croppedIm = catIm.crop((335, 345, 565, 560))
>>> croppedIm.save('cropped.png')

This makes a new Image object for the cropped image, stores the
object in croppedIm, and then calls save() on croppedIm to save the cropped
image in cropped.png. The new file cropped.png will be created from the
original image, like in Figure 19-4.

    

Figure 19-4: The new image will be just the cropped
section of the original image.

454 Chapter 19

Copying and Pasting Images onto Other Images
The copy() method will return a new Image object with the same image as
the Image object it was called on. This is useful if you need to make changes
to an image but also want to keep an untouched version of the original. For
example, enter the following into the interactive shell:

>>> from PIL import Image
>>> catIm = Image.open('zophie.png')
>>> catCopyIm = catIm.copy()

The catIm and catCopyIm variables contain two separate Image objects,
which both have the same image on them. Now that you have an Image object
stored in catCopyIm, you can modify catCopyIm as you like and save it to a new
filename, leaving zophie.png untouched. For example, let’s try modifying
catCopyIm with the paste() method.

The paste() method is called on an Image object and pastes another image
on top of it. Let’s continue the shell example by pasting a smaller image onto
catCopyIm.

>>> faceIm = catIm.crop((335, 345, 565, 560))
>>> faceIm.size
(230, 215)
>>> catCopyIm.paste(faceIm, (0, 0))
>>> catCopyIm.paste(faceIm, (400, 500))
>>> catCopyIm.save('pasted.png')

First we pass crop() a box tuple for the rectangular area in zophie.png
that contains Zophie’s face. This creates an Image object representing a
230×215 crop, which we store in faceIm. Now we can paste faceIm onto
catCopyIm. The paste() method takes two arguments: a “source” Image
object and a tuple of the x- and y-coordinates where you want to paste
the top-left corner of the source Image object onto the main Image object.
Here we call paste() twice on catCopyIm, passing (0, 0) the first time and
(400, 500) the second time. This pastes faceIm onto catCopyIm twice: once
with the top-left corner of faceIm at (0, 0) on catCopyIm, and once with
the top-left corner of faceIm at (400, 500). Finally, we save the modified
catCopyIm to pasted.png. The pasted.png image looks like Figure 19-5.

N O T E 	 Despite their names, the copy() and paste() methods in Pillow do not use your com-
puter’s clipboard.

Note that the paste() method modifies its Image object in place ; it does
not return an Image object with the pasted image. If you want to call paste()
but also keep an untouched version of the original image around, you’ll
need to first copy the image and then call paste() on that copy.

Manipulating Images 455

Figure 19-5: Zophie the cat, with her
face pasted twice

Say you want to tile Zophie’s head across the entire image, as in
Figure 19-6. You can achieve this effect with just a couple for loops.
Continue the interactive shell example by entering the following:

>>> catImWidth, catImHeight = catIm.size
>>> faceImWidth, faceImHeight = faceIm.size

u >>> catCopyTwo = catIm.copy()
v >>> for left in range(0, catImWidth, faceImWidth):
 w for top in range(0, catImHeight, faceImHeight):

 print(left, top)
 catCopyTwo.paste(faceIm, (left, top))
0 0
0 215
0 430
0 645
0 860
0 1075
230 0
230 215
--snip--
690 860
690 1075
>>> catCopyTwo.save('tiled.png')

456 Chapter 19

Figure 19-6: Nested for loops used
with paste() to duplicate the cat’s face
(a dupli-cat, if you will)

Here we store the width of height of catIm in catImWidth and catImHeight.
At u we make a copy of catIm and store it in catCopyTwo. Now that we
have a copy that we can paste onto, we start looping to paste faceIm onto
catCopyTwo. The outer for loop’s left variable starts at 0 and increases by
faceImWidth(230) v. The inner for loop’s top variable start at 0 and increases
by faceImHeight(215) w. These nested for loops produce values for left and
top to paste a grid of faceIm images over the catCopyTwo Image object, as in
Figure 19-6. To see our nested loops working, we print left and top. After
the pasting is complete, we save the modified catCopyTwo to tiled.png.

Resizing an Image
The resize() method is called on an Image object and returns a new Image
object of the specified width and height. It accepts a two-integer tuple argu-
ment, representing the new width and height of the returned image. Enter
the following into the interactive shell:

>>> from PIL import Image
>>> catIm = Image.open('zophie.png')

u >>> width, height = catIm.size
v >>> quartersizedIm = catIm.resize((int(width / 2), int(height / 2)))

>>> quartersizedIm.save('quartersized.png')
w >>> svelteIm = catIm.resize((width, height + 300))

>>> svelteIm.save('svelte.png')

Here we assign the two values in the catIm.size tuple to the variables
width and height u. Using width and height instead of catIm.size[0] and
catIm.size[1] makes the rest of the code more readable.

Manipulating Images 457

The first resize() call passes int(width / 2) for the new width and
int(height / 2) for the new height v, so the Image object returned from
resize() will be half the length and width of the original image, or one-
quarter of the original image size overall. The resize() method accepts
only integers in its tuple argument, which is why you needed to wrap both
divisions by 2 in an int() call.

This resizing keeps the same proportions for the width and height. But
the new width and height passed to resize() do not have to be proportional
to the original image. The svelteIm variable contains an Image object that
has the original width but a height that is 300 pixels taller w, giving Zophie
a more slender look.

Note that the resize() method does not edit the Image object in place
but instead returns a new Image object.

Rotating and Flipping Images
Images can be rotated with the rotate() method, which returns a new Image
object of the rotated image and leaves the original Image object unchanged.
The argument to rotate() is a single integer or float representing the num-
ber of degrees to rotate the image counterclockwise. Enter the following
into the interactive shell:

>>> from PIL import Image
>>> catIm = Image.open('zophie.png')
>>> catIm.rotate(90).save('rotated90.png')
>>> catIm.rotate(180).save('rotated180.png')
>>> catIm.rotate(270).save('rotated270.png')

Note how you can chain method calls by calling save() directly on the
Image object returned from rotate(). The first rotate() and save() call makes
a new Image object representing the image rotated counterclockwise by
90 degrees and saves the rotated image to rotated90.png. The second and
third calls do the same, but with 180 degrees and 270 degrees. The results
look like Figure 19-7.

Figure 19-7: The original image (left) and the image rotated counterclockwise by 90, 180,
and 270 degrees

Notice that the width and height of the image change when the image
is rotated 90 or 270 degrees. If you rotate an image by some other amount,
the original dimensions of the image are maintained. On Windows, a

458 Chapter 19

black background is used to fill in any gaps made by the rotation, like in
Figure 19-8. On macOS, transparent pixels are used for the gaps instead.

The rotate() method has an optional expand keyword argument that can
be set to True to enlarge the dimensions of the image to fit the entire rotated
new image. For example, enter the following into the interactive shell:

>>> catIm.rotate(6).save('rotated6.png')
>>> catIm.rotate(6, expand=True).save('rotated6_expanded.png')

The first call rotates the image 6 degrees and saves it to rotate6.png (see
the image on the left of Figure 19-8). The second call rotates the image
6 degrees with expand set to True and saves it to rotate6_expanded.png (see the
image on the right of Figure 19-8).

    

Figure 19-8: The image rotated 6 degrees normally (left) and with expand=True (right)

You can also get a “mirror flip” of an image with the transpose() method.
You must pass either Image.FLIP_LEFT_RIGHT or Image.FLIP_TOP_BOTTOM to the
transpose() method. Enter the following into the interactive shell:

>>> catIm.transpose(Image.FLIP_LEFT_RIGHT).save('horizontal_flip.png')
>>> catIm.transpose(Image.FLIP_TOP_BOTTOM).save('vertical_flip.png')

Like rotate(), transpose() creates a new Image object. Here we pass Image​
.FLIP_LEFT_RIGHT to flip the image horizontally and then save the result to
horizontal_flip.png. To flip the image vertically, we pass Image.FLIP_TOP_BOTTOM
and save to vertical_flip.png. The results look like Figure 19-9.

Manipulating Images 459

Figure 19-9: The original image (left), horizontal flip (center), and vertical flip (right)

Changing Individual Pixels
The color of an individual pixel can be retrieved or set with the getpixel()
and putpixel() methods. These methods both take a tuple representing the
x- and y-coordinates of the pixel. The putpixel() method also takes an addi-
tional tuple argument for the color of the pixel. This color argument is a
four-integer RGBA tuple or a three-integer RGB tuple. Enter the following
into the interactive shell:

>>> from PIL import Image
u >>> im = Image.new('RGBA', (100, 100))
v >>> im.getpixel((0, 0))

(0, 0, 0, 0)
w >>> for x in range(100):

 for y in range(50):
 x im.putpixel((x, y), (210, 210, 210))

>>> from PIL import ImageColor
y >>> for x in range(100):

 for y in range(50, 100):
 z im.putpixel((x, y), ImageColor.getcolor('darkgray', 'RGBA'))

>>> im.getpixel((0, 0))
(210, 210, 210, 255)
>>> im.getpixel((0, 50))
(169, 169, 169, 255)
>>> im.save('putPixel.png')

At u we make a new image that is a 100×100 transparent square.
Calling getpixel() on some coordinates in this image returns (0, 0, 0, 0)
because the image is transparent v. To color pixels in this image, we can
use nested for loops to go through all the pixels in the top half of the
image w and color each pixel using putpixel() x. Here we pass putpixel()
the RGB tuple (210, 210, 210), a light gray.

460 Chapter 19

Say we want to color the bottom half of the image dark gray
but don’t know the RGB tuple for dark gray. The putpixel() method
doesn’t accept a standard color name like 'darkgray', so you have to use
ImageColor.getcolor() to get a color tuple from 'darkgray'. Loop through the
pixels in the bottom half of the image y and pass putpixel() the return
value of ImageColor​.getcolor() z, and you should now have an image that
is light gray in its top half and dark gray in the bottom half, as shown in
Figure 19-10. You can call getpixel() on some coordinates to confirm that
the color at any given pixel is what you expect. Finally, save the image to
putPixel.png.

Figure 19-10: The
putPixel.png image

Of course, drawing one pixel at a time onto an image isn’t very con-
venient. If you need to draw shapes, use the ImageDraw functions explained
later in this chapter.

Project: Adding a Logo
Say you have the boring job of resizing thousands of images and adding a
small logo watermark to the corner of each. Doing this with a basic graph-
ics program such as Paintbrush or Paint would take forever. A fancier
graphics application such as Photoshop can do batch processing, but that
software costs hundreds of dollars. Let’s write a script to do it instead.

Say that Figure 19-11 is the logo you want to add to the bottom-right
corner of each image: a black cat icon with a white border, with the rest
of the image transparent.

Figure 19-11: The logo to be
added to the image

Manipulating Images 461

At a high level, here’s what the program should do:

1.	 Load the logo image.

2.	 Loop over all .png and.jpg files in the working directory.

3.	 Check whether the image is wider or taller than 300 pixels.

4.	 If so, reduce the width or height (whichever is larger) to 300 pixels and
scale down the other dimension proportionally.

5.	 Paste the logo image into the corner.

6.	 Save the altered images to another folder.

This means the code will need to do the following:

1.	 Open the catlogo.png file as an Image object.

2.	 Loop over the strings returned from os.listdir('.').

3.	 Get the width and height of the image from the size attribute.

4.	 Calculate the new width and height of the resized image.

5.	 Call the resize() method to resize the image.

6.	 Call the paste() method to paste the logo.

7.	 Call the save() method to save the changes, using the original filename.

Step 1: Open the Logo Image
For this project, open a new file editor tab, enter the following code, and
save it as resizeAndAddLogo.py:

#! python3
resizeAndAddLogo.py - Resizes all images in current working directory to fit
in a 300x300 square, and adds catlogo.png to the lower-right corner.

import os
from PIL import Image

u SQUARE_FIT_SIZE = 300
v LOGO_FILENAME = 'catlogo.png'

w logoIm = Image.open(LOGO_FILENAME)
x logoWidth, logoHeight = logoIm.size

TODO: Loop over all files in the working directory.

TODO: Check if image needs to be resized.

TODO: Calculate the new width and height to resize to.

TODO: Resize the image.

TODO: Add the logo.

TODO: Save changes.

462 Chapter 19

By setting up the SQUARE_FIT_SIZE u and LOGO_FILENAME v constants at the
start of the program, we’ve made it easy to change the program later. Say the
logo that you’re adding isn’t the cat icon, or say you’re reducing the output
images’ largest dimension to something other than 300 pixels. With these
constants at the start of the program, you can just open the code, change
those values once, and you’re done. (Or you can make it so that the values
for these constants are taken from the command line arguments.) Without
these constants, you’d instead have to search the code for all instances of 300
and 'catlogo.png' and replace them with the values for your new project. In
short, using constants makes your program more generalized.

The logo Image object is returned from Image.open() w. For readability,
logoWidth and logoHeight are assigned to the values from logoIm.size x.

The rest of the program is a skeleton of TODO comments for now.

Step 2: Loop Over All Files and Open Images
Now you need to find every .png file and .jpg file in the current working
directory. You don’t want to add the logo image to the logo image itself,
so the program should skip any image with a filename that’s the same as
LOGO_FILENAME. Add the following to your code:

#! python3
resizeAndAddLogo.py - Resizes all images in current working directory to fit
in a 300x300 square, and adds catlogo.png to the lower-right corner.

import os
from PIL import Image

--snip--

os.makedirs('withLogo', exist_ok=True)
Loop over all files in the working directory.

u for filename in os.listdir('.'):
 v if not (filename.endswith('.png') or filename.endswith('.jpg')) \

 or filename == LOGO_FILENAME:
 w continue # skip non-image files and the logo file itself

 x im = Image.open(filename)
 width, height = im.size

--snip--

First, the os.makedirs() call creates a withLogo folder to store the fin-
ished images with logos, instead of overwriting the original image files.
The exist_ok=True keyword argument will keep os.makedirs() from raising
an exception if withLogo already exists. While looping through all the files
in the working directory with os.listdir('.') u, the long if statement v
checks whether each filename doesn’t end with .png or .jpg. If so—or if the
file is the logo image itself—then the loop should skip it and use continue w
to go to the next file. If filename does end with '.png' or '.jpg' (and isn’t the
logo file), you can open it as an Image object x and set width and height.

Manipulating Images 463

Step 3: Resize the Images
The program should resize the image only if the width or height is larger
than SQUARE_FIT_SIZE (300 pixels, in this case), so put all of the resizing code
inside an if statement that checks the width and height variables. Add the
following code to your program:

#! python3
resizeAndAddLogo.py - Resizes all images in current working directory to fit
in a 300x300 square, and adds catlogo.png to the lower-right corner.

import os
from PIL import Image

--snip--

 # Check if image needs to be resized.
 if width > SQUARE_FIT_SIZE and height > SQUARE_FIT_SIZE:
 # Calculate the new width and height to resize to.
 if width > height:

 u height = int((SQUARE_FIT_SIZE / width) * height)
 width = SQUARE_FIT_SIZE
 else:

 v width = int((SQUARE_FIT_SIZE / height) * width)
 height = SQUARE_FIT_SIZE

 # Resize the image.
 print('Resizing %s...' % (filename))

 w im = im.resize((width, height))

--snip--

If the image does need to be resized, you need to find out whether it is a
wide or tall image. If width is greater than height, then the height should be
reduced by the same proportion that the width would be reduced u. This
proportion is the SQUARE_FIT_SIZE value divided by the current width. The
new height value is this proportion multiplied by the current height value.
Since the division operator returns a float value and resize() requires the
dimensions to be integers, remember to convert the result to an integer
with the int() function. Finally, the new width value will simply be set to
SQUARE_FIT_SIZE.

If the height is greater than or equal to the width (both cases are han-
dled in the else clause), then the same calculation is done, except with the
height and width variables swapped v.

Once width and height contain the new image dimensions, pass them to
the resize() method and store the returned Image object in im w.

Step 4: Add the Logo and Save the Changes
Whether or not the image was resized, the logo should still be pasted to the
bottom-right corner. Where exactly the logo should be pasted depends on
both the size of the image and the size of the logo. Figure 19-12 shows how

464 Chapter 19

to calculate the pasting position. The left coordinate for where to paste the
logo will be the image width minus the logo width; the top coordinate for
where to paste the logo will be the image height minus the logo height.

Image
Logo width

Lo
go

 h
ei

gh
t

Logo

Image width

Im
ag

e
he

ig
ht

Figure 19-12: The left and top coordinates
for placing the logo in the bottom-right
corner should be the image width/height
minus the logo width/height.

After your code pastes the logo into the image, it should save the
modified Image object. Add the following to your program:

#! python3
resizeAndAddLogo.py - Resizes all images in current working directory to fit
in a 300x300 square, and adds catlogo.png to the lower-right corner.

import os
from PIL import Image

--snip--

 # Check if image needs to be resized.
 --snip--

 # Add the logo.
 u print('Adding logo to %s...' % (filename))
 v im.paste(logoIm, (width - logoWidth, height - logoHeight), logoIm)

 # Save changes.
 w im.save(os.path.join('withLogo', filename))

The new code prints a message telling the user that the logo is being
added u, pastes logoIm onto im at the calculated coordinates v, and saves
the changes to a filename in the withLogo directory w. When you run this
program with the zophie.png file as the only image in the working directory,
the output will look like this:

Resizing zophie.png...
Adding logo to zophie.png...

Manipulating Images 465

The image zophie.png will be changed to a 225×300-pixel image that
looks like Figure 19-13. Remember that the paste() method will not paste
the transparency pixels if you do not pass the logoIm for the third argument
as well. This program can automatically resize and “logo-ify” hundreds of
images in just a couple minutes.

    

Figure 19-13: The image zophie.png resized and the logo added (left). If you forget
the third argument, the transparent pixels in the logo will be copied as solid white
pixels (right).

Ideas for Similar Programs
Being able to composite images or modify image sizes in a batch can be useful
in many applications. You could write similar programs to do the following:

•	 Add text or a website URL to images.

•	 Add timestamps to images.

•	 Copy or move images into different folders based on their sizes.

•	 Add a mostly transparent watermark to an image to prevent others
from copying it.

Drawing on Images
If you need to draw lines, rectangles, circles, or other simple shapes on
an image, use Pillow’s ImageDraw module. Enter the following into the
interactive shell:

>>> from PIL import Image, ImageDraw
>>> im = Image.new('RGBA', (200, 200), 'white')
>>> draw = ImageDraw.Draw(im)

466 Chapter 19

First, we import Image and ImageDraw. Then we create a new image, in this
case, a 200×200 white image, and store the Image object in im. We pass the
Image object to the ImageDraw.Draw() function to receive an ImageDraw object.
This object has several methods for drawing shapes and text onto an Image
object. Store the ImageDraw object in a variable like draw so you can use it
easily in the following example.

Drawing Shapes
The following ImageDraw methods draw various kinds of shapes on the
image. The fill and outline parameters for these methods are optional and
will default to white if left unspecified.

Points

The point(xy, fill) method draws individual pixels. The xy argument
represents a list of the points you want to draw. The list can be a list of
x- and y-coordinate tuples, such as [(x, y), (x, y), ...], or a list of x-
and y-coordinates without tuples, such as [x1, y1, x2, y2, ...]. The fill
argument is the color of the points and is either an RGBA tuple or a string
of a color name, such as 'red'. The fill argument is optional.

Lines

The line(xy, fill, width) method draws a line or series of lines. xy is either
a list of tuples, such as [(x, y), (x, y), ...], or a list of integers, such as
[x1, y1, x2, y2, ...]. Each point is one of the connecting points on the
lines you’re drawing. The optional fill argument is the color of the lines,
as an RGBA tuple or color name. The optional width argument is the width
of the lines and defaults to 1 if left unspecified.

Rectangles

The rectangle(xy, fill, outline) method draws a rectangle. The xy argu-
ment is a box tuple of the form (left, top, right, bottom). The left and top
values specify the x- and y-coordinates of the upper-left corner of the rect-
angle, while right and bottom specify the lower-right corner. The optional
fill argument is the color that will fill the inside of the rectangle. The
optional outline argument is the color of the rectangle’s outline.

Ellipses

The ellipse(xy, fill, outline) method draws an ellipse. If the width and
height of the ellipse are identical, this method will draw a circle. The xy
argument is a box tuple (left, top, right, bottom) that represents a box that
precisely contains the ellipse. The optional fill argument is the color of the
inside of the ellipse, and the optional outline argument is the color of the
ellipse’s outline.

Manipulating Images 467

Polygons

The polygon(xy, fill, outline) method draws an arbitrary polygon. The xy
argument is a list of tuples, such as [(x, y), (x, y), ...], or integers, such
as [x1, y1, x2, y2, ...], representing the connecting points of the polygon’s
sides. The last pair of coordinates will be automatically connected to the
first pair. The optional fill argument is the color of the inside of the poly-
gon, and the optional outline argument is the color of the polygon’s outline.

Drawing Example

Enter the following into the interactive shell:

>>> from PIL import Image, ImageDraw
>>> im = Image.new('RGBA', (200, 200), 'white')
>>> draw = ImageDraw.Draw(im)

u >>> draw.line([(0, 0), (199, 0), (199, 199), (0, 199), (0, 0)], fill='black')
v >>> draw.rectangle((20, 30, 60, 60), fill='blue')
w >>> draw.ellipse((120, 30, 160, 60), fill='red')
x >>> draw.polygon(((57, 87), (79, 62), (94, 85), (120, 90), (103, 113)),

fill='brown')
y >>> for i in range(100, 200, 10):

 draw.line([(i, 0), (200, i - 100)], fill='green')

>>> im.save('drawing.png')

After making an Image object for a 200×200 white image, passing it to
ImageDraw.Draw() to get an ImageDraw object, and storing the ImageDraw object
in draw, you can call drawing methods on draw. Here we make a thin, black
outline at the edges of the image u, a blue rectangle with its top-left corner
at (20, 30) and bottom-right corner at (60, 60) v, a red ellipse defined by a
box from (120, 30) to (160, 60) w, a brown polygon with five points x, and
a pattern of green lines drawn with a for loop y. The resulting drawing.png
file will look like Figure 19-14.

Figure 19-14: The resulting drawing.png image

468 Chapter 19

There are several other shape-drawing methods for ImageDraw objects.
The full documentation is available at https://pillow.readthedocs.io/en/latest​
/reference/ImageDraw.html.

Drawing Text
The ImageDraw object also has a text() method for drawing text onto an
image. The text() method takes four arguments: xy, text, fill, and font.

•	 The xy argument is a two-integer tuple specifying the upper-left corner
of the text box.

•	 The text argument is the string of text you want to write.

•	 The optional fill argument is the color of the text.

•	 The optional font argument is an ImageFont object, used to set the typeface
and size of the text. This is described in more detail in the next section.

Since it’s often hard to know in advance what size a block of text will be
in a given font, the ImageDraw module also offers a textsize() method. Its first
argument is the string of text you want to measure, and its second argument
is an optional ImageFont object. The textsize() method will then return a two-
integer tuple of the width and height that the text in the given font would be
if it were written onto the image. You can use this width and height to help
you calculate exactly where you want to put the text on your image.

The first three arguments for text() are straightforward. Before we use
text() to draw text onto an image, let’s look at the optional fourth argu-
ment, the ImageFont object.

Both text() and textsize() take an optional ImageFont object as their
final arguments. To create one of these objects, first run the following:

>>> from PIL import ImageFont

Now that you’ve imported Pillow’s ImageFont module, you can call the
ImageFont.truetype() function, which takes two arguments. The first argu-
ment is a string for the font’s TrueType file—this is the actual font file that
lives on your hard drive. A TrueType file has the .ttf file extension and can
usually be found in the following folders:

•	 On Windows: C:\Windows\Fonts

•	 On macOS: /Library/Fonts and /System/Library/Fonts

•	 On Linux: /usr/share/fonts/truetype

You don’t actually need to enter these paths as part of the TrueType
file string because Python knows to automatically search for fonts in these
directories. But Python will display an error if it is unable to find the font
you specified.

The second argument to ImageFont.truetype() is an integer for the font
size in points (rather than, say, pixels). Keep in mind that Pillow creates PNG
images that are 72 pixels per inch by default, and a point is 1/72 of an inch.

https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html

Manipulating Images 469

Enter the following into the interactive shell, replacing FONT_FOLDER with
the actual folder name your operating system uses:

>>> from PIL import Image, ImageDraw, ImageFont
>>> import os

u >>> im = Image.new('RGBA', (200, 200), 'white')
v >>> draw = ImageDraw.Draw(im)
w >>> draw.text((20, 150), 'Hello', fill='purple')

>>> fontsFolder = 'FONT_FOLDER' # e.g. ‘/Library/Fonts’
x >>> arialFont = ImageFont.truetype(os.path.join(fontsFolder, 'arial.ttf'), 32)
y >>> draw.text((100, 150), 'Howdy', fill='gray', font=arialFont)

>>> im.save('text.png')

After importing Image, ImageDraw, ImageFont, and os, we make an Image
object for a new 200×200 white image u and make an ImageDraw object from
the Image object v. We use text() to draw Hello at (20, 150) in purple w. We
didn’t pass the optional fourth argument in this text() call, so the typeface
and size of this text aren’t customized.

To set a typeface and size, we first store the folder name (like /Library
/Fonts) in fontsFolder. Then we call ImageFont.truetype(), passing it the .ttf file
for the font we want, followed by an integer font size x. Store the Font object
you get from ImageFont.truetype() in a variable like arialFont, and then pass
the variable to text() in the final keyword argument. The text() call at y
draws Howdy at (100, 150) in gray in 32-point Arial.

The resulting text.png file will look like Figure 19-15.

Figure 19-15: The resulting text.png image

Summary
Images consist of a collection of pixels, and each pixel has an RGBA value
for its color and its addressable by x- and y-coordinates. Two common image
formats are JPEG and PNG. The pillow module can handle both of these
image formats and others.

470 Chapter 19

When an image is loaded into an Image object, its width and height
dimensions are stored as a two-integer tuple in the size attribute. Objects
of the Image data type also have methods for common image manipulations:
crop(), copy(), paste(), resize(), rotate(), and transpose(). To save the Image
object to an image file, call the save() method.

If you want your program to draw shapes onto an image, use ImageDraw
methods to draw points, lines, rectangles, ellipses, and polygons. The
module also provides methods for drawing text in a typeface and font
size of your choosing.

Although advanced (and expensive) applications such as Photoshop
provide automatic batch processing features, you can use Python scripts to
do many of the same modifications for free. In the previous chapters, you
wrote Python programs to deal with plaintext files, spreadsheets, PDFs, and
other formats. With the pillow module, you’ve extended your programming
powers to processing images as well!

Practice Questions

1.	 What is an RGBA value?

2.	 How can you get the RGBA value of 'CornflowerBlue' from the
Pillow module?

3.	 What is a box tuple?

4.	 What function returns an Image object for, say, an image file named
zophie.png?

5.	 How can you find out the width and height of an Image object’s image?

6.	 What method would you call to get Image object for a 100×100 image,
excluding the lower-left quarter of it?

7.	 After making changes to an Image object, how could you save it as an
image file?

8.	 What module contains Pillow’s shape-drawing code?

9.	 Image objects do not have drawing methods. What kind of object does?
How do you get this kind of object?

Practice Projects
For practice, write programs that do the following.

Extending and Fixing the Chapter Project Programs
The resizeAndAddLogo.py program in this chapter works with PNG and JPEG
files, but Pillow supports many more formats than just these two. Extend
resizeAndAddLogo.py to process GIF and BMP images as well.

Another small issue is that the program modifies PNG and JPEG files
only if their file extensions are set in lowercase. For example, it will process

Manipulating Images 471

zophie.png but not zophie.PNG. Change the code so that the file extension
check is case insensitive.

Finally, the logo added to the bottom-right corner is meant to be just
a small mark, but if the image is about the same size as the logo itself, the
result will look like Figure 19-16. Modify resizeAndAddLogo.py so that the
image must be at least twice the width and height of the logo image before
the logo is pasted. Otherwise, it should skip adding the logo.

Figure 19-16: When the image isn’t much
larger than the logo, the results look ugly.

Identifying Photo Folders on the Hard Drive
I have a bad habit of transferring files from my digital camera to temporary
folders somewhere on the hard drive and then forgetting about these folders.
It would be nice to write a program that could scan the entire hard drive and
find these leftover “photo folders.”

Write a program that goes through every folder on your hard drive and
finds potential photo folders. Of course, first you’ll have to define what you
consider a “photo folder” to be; let’s say that it’s any folder where more than
half of the files are photos. And how do you define what files are photos?
First, a photo file must have the file extension .png or .jpg. Also, photos
are large images; a photo file’s width and height must both be larger than
500 pixels. This is a safe bet, since most digital camera photos are several
thousand pixels in width and height.

As a hint, here’s a rough skeleton of what this program might look like:

#! python3
Import modules and write comments to describe this program.

for foldername, subfolders, filenames in os.walk('C:\\'):
 numPhotoFiles = 0
 numNonPhotoFiles = 0
 for filename in filenames:
 # Check if file extension isn't .png or .jpg.

472 Chapter 19

 if TODO:
 numNonPhotoFiles += 1
 continue # skip to next filename

 # Open image file using Pillow.

 # Check if width & height are larger than 500.
 if TODO:
 # Image is large enough to be considered a photo.
 numPhotoFiles += 1
 else:
 # Image is too small to be a photo.
 numNonPhotoFiles += 1

 # If more than half of files were photos,
 # print the absolute path of the folder.
 if TODO:
 print(TODO)

When the program runs, it should print the absolute path of any photo
folders to the screen.

Custom Seating Cards
Chapter 15 included a practice project to create custom invitations
from a list of guests in a plaintext file. As an additional project, use the
pillow module to create images for custom seating cards for your guests.
For each of the guests listed in the guests.txt file from the resources at
https://nostarch.com/automatestuff2/, generate an image file with the guest
name and some flowery decoration. A public domain flower image is also
available in the book's resources.

To ensure that each seating card is the same size, add a black rectangle
on the edges of the invitation image so that when the image is printed
out, there will be a guideline for cutting. The PNG files that Pillow pro-
duces are set to 72 pixels per inch, so a 4×5-inch card would require a
288×360‑pixel image.

Knowing various Python modules for
editing spreadsheets, downloading files,

and launching programs is useful, but
sometimes there just aren’t any modules for

the applications you need to work with. The ultimate
tools for automating tasks on your computer are
programs you write that directly control the keyboard and mouse. These
programs can control other applications by sending them virtual keystrokes
and mouse clicks, just as if you were sitting at your computer and interacting
with the applications yourself.

This technique is known as graphical user interface automation, or GUI
automation for short. With GUI automation, your programs can do anything
that a human user sitting at the computer can do, except spill coffee on
the keyboard. Think of GUI automation as programming a robotic arm.
You can program the robotic arm to type at your keyboard and move your
mouse for you. This technique is particularly useful for tasks that involve
a lot of mindless clicking or filling out of forms.

20
C O N T R O L L I N G T H E K E Y B O A R D

A N D M O U S E W I T H G U I
A U T O M A T I O N

474 Chapter 20

Some companies sell innovative (and pricey) “automation solutions,”
usually marketed as robotic process automation (RPA). These products are
effectively no different than the Python scripts you can make yourself with
the pyautogui module, which has functions for simulating mouse move-
ments, button clicks, and mouse wheel scrolls. This chapter covers only
a subset of PyAutoGUI’s features; you can find the full documentation
at https://pyautogui.readthedocs.io/.

Installing the pyautogui Module
The pyautogui module can send virtual keypresses and mouse clicks to
Windows, macOS, and Linux. Windows and macOS users can simply use
pip to install PyAutoGUI. However, Linux users will first have to install
some software that PyAutoGUI depends on. Open a terminal window
and enter the following commands:

•	 sudo apt-get install scrot

•	 sudo apt-get install python3-tk

•	 sudo apt-get install python3-dev

To install PyAutoGUI, run pip install --user pyautogui. Don’t use sudo
with pip; you may install modules to the Python installation that the operat-
ing system uses, causing conflicts with any scripts that rely on its original
configuration. However, you should use the sudo command when installing
applications with apt-get.

Appendix A has complete information on installing third-party modules.
To test whether PyAutoGUI has been installed correctly, run import pyautogui
from the interactive shell and check for any error messages.

W A R N I N G 	 Don’t save your program as pyautogui.py. When you run import pyautogui, Python
will import your program instead of the PyAutoGUI and you’ll get error messages like
AttributeError: module 'pyautogui' has no attribute 'click'.

Setting Up Accessibility Apps on macOS
As a security measure, macOS doesn’t normally let programs control the
mouse or keyboard. To make PyAutoGUI work on macOS, you must set
the program running your Python script to be an accessibility application.
Without this step, your PyAutoGUI function calls will have no effect.

Whether you run your Python programs from Mu, IDLE, or the
Terminal, have that application open. Then open the System Preferences
and go to the Accessibility tab. The currently open applications will appear
under the “Allow the apps below to control your computer” label. Check

Controlling the Keyboard and Mouse with GUI Automation 475

Mu, IDLE, Terminal, or whichever app you use to run your Python scripts.
You’ll be prompted to enter your password to confirm these changes.

Staying on Track
Before you jump into a GUI automation, you should know how to escape
problems that may arise. Python can move your mouse and type keystrokes at
an incredible speed. In fact, it might be too fast for other programs to keep
up with. Also, if something goes wrong but your program keeps moving the
mouse around, it will be hard to tell what exactly the program is doing or
how to recover from the problem. Like the enchanted brooms from Disney’s
The Sorcerer’s Apprentice, which kept filling—and then overfilling—Mickey’s
tub with water, your program could get out of control even though it’s follow-
ing your instructions perfectly. Stopping the program can be difficult if the
mouse is moving around on its own, preventing you from clicking the Mu
Editor window to close it. Fortunately, there are several ways to prevent or
recover from GUI automation problems.

Pauses and Fail-Safes
If your program has a bug and you’re unable to use the keyboard and
mouse to shut it down, you can use PyAutoGUI’s fail-safe feature. Quickly
slide the mouse to one of the four corners of the screen. Every PyAutoGUI
function call has a 10th-of-a-second delay after performing its action to give
you enough time to move the mouse to a corner. If PyAutoGUI then finds
that the mouse cursor is in a corner, it raises the pyautogui.FailSafeException
exception. Non-PyAutoGUI instructions will not have this 10th-of-a-second
delay.

If you find yourself in a situation where you need to stop your PyAutoGUI
program, just slam the mouse toward a corner to stop it.

Shutting Down Everything by Logging Out
Perhaps the simplest way to stop an out-of-control GUI automation
program is to log out, which will shut down all running programs. On
Windows and Linux, the logout hotkey is ctrl-alt-del. On macOS, it is
-shift-option-Q. By logging out, you’ll lose any unsaved work, but at
least you won’t have to wait for a full reboot of the computer.

Controlling Mouse Movement
In this section, you’ll learn how to move the mouse and track its position
on the screen using PyAutoGUI, but first you need to understand how
PyAutoGUI works with coordinates.

The mouse functions of PyAutoGUI use x- and y-coordinates. Figure 20-1
shows the coordinate system for the computer screen; it’s similar to the coor-
dinate system used for images, discussed in Chapter 19. The origin, where x

476 Chapter 20

and y are both zero, is at the upper-left corner of the screen. The x-coordi-
nates increase going to the right, and the y-coordinates increase going down.
All coordinates are positive integers; there are no negative coordinates.

(0,0) (1919,0)

(0,1079) (1919,1079)

x increases

y
in

cr
ea

se
s

Figure 20-1: The coordinates of a computer screen
with 1920×1080 resolution

Your resolution is how many pixels wide and tall your screen is. If your
screen’s resolution is set to 1920×1080, then the coordinate for the upper-
left corner will be (0, 0), and the coordinate for the bottom-right corner
will be (1919, 1079).

The pyautogui.size() function returns a two-integer tuple of the screen’s
width and height in pixels. Enter the following into the interactive shell:

>>> import pyautogui
>>> wh = pyautogui.size() # Obtain the screen resolution.
>>> wh
Size(width=1920, height=1080)
>>> wh[0]
1920
>>> wh.width
1920

The pyautogui.size() function returns (1920, 1080) on a computer with
a 1920×1080 resolution; depending on your screen’s resolution, your return
value may be different. The Size object returned by size() is a named tuple.
Named tuples have numeric indexes, like regular tuples, and attribute names,
like objects: both wh[0] and wh.width evaluate to the width of the screen.
(Named tuples are beyond the scope of this book. Just remember that you
can use them the same way you use tuples.)

Controlling the Keyboard and Mouse with GUI Automation 477

Moving the Mouse
Now that you understand screen coordinates, let’s move the mouse. The
pyautogui.moveTo() function will instantly move the mouse cursor to a speci-
fied position on the screen. Integer values for the x- and y-coordinates make
up the function’s first and second arguments, respectively. An optional
duration integer or float keyword argument specifies the number of seconds
it should take to move the mouse to the destination. If you leave it out, the
default is 0 for instantaneous movement. (All of the duration keyword argu-
ments in PyAutoGUI functions are optional.) Enter the following into the
interactive shell:

>>> import pyautogui
>>> for i in range(10): # Move mouse in a square.
... pyautogui.moveTo(100, 100, duration=0.25)
... pyautogui.moveTo(200, 100, duration=0.25)
... pyautogui.moveTo(200, 200, duration=0.25)
... pyautogui.moveTo(100, 200, duration=0.25)

This example moves the mouse cursor clockwise in a square pattern
among the four coordinates provided a total of 10 times. Each movement
takes a quarter of a second, as specified by the duration=0.25 keyword argu-
ment. If you hadn’t passed a third argument to any of the pyautogui.moveTo()
calls, the mouse cursor would have instantly teleported from point to point.

The pyautogui.move() function moves the mouse cursor relative to its current
position. The following example moves the mouse in the same square pattern,
except it begins the square from wherever the mouse happens to be on the
screen when the code starts running:

>>> import pyautogui
>>> for i in range(10):
... pyautogui.move(100, 0, duration=0.25) # right
... pyautogui.move(0, 100, duration=0.25) # down
... pyautogui.move(-100, 0, duration=0.25) # left
... pyautogui.move(0, -100, duration=0.25) # up

The pyautogui.move() function also takes three arguments: how many
pixels to move horizontally to the right, how many pixels to move vertically
downward, and (optionally) how long it should take to complete the move-
ment. A negative integer for the first or second argument will cause the
mouse to move left or upward, respectively.

Getting the Mouse Position
You can determine the mouse’s current position by calling the pyautogui
.position() function, which will return a Point named tuple of the mouse
cursor’s x and y positions at the time of the function call. Enter the following
into the interactive shell, moving the mouse around after each call:

>>> pyautogui.position() # Get current mouse position.
Point(x=311, y=622)

478 Chapter 20

>>> pyautogui.position() # Get current mouse position again.
Point(x=377, y=481)
>>> p = pyautogui.position() # And again.
>>> p
Point(x=1536, y=637)
>>> p[0] # The x-coordinate is at index 0.
1536
>>> p.x # The x-coordinate is also in the x attribute.
1536

Of course, your return values will vary depending on where your
mouse cursor is.

Controlling Mouse Interaction
Now that you know how to move the mouse and figure out where it is on
the screen, you’re ready to start clicking, dragging, and scrolling.

Clicking the Mouse
To send a virtual mouse click to your computer, call the pyautogui.click()
method. By default, this click uses the left mouse button and takes place
wherever the mouse cursor is currently located. You can pass x- and
y-coordinates of the click as optional first and second arguments if you
want it to take place somewhere other than the mouse’s current position.

If you want to specify which mouse button to use, include the button
keyword argument, with a value of 'left', 'middle', or 'right'. For example,
pyautogui.click(100, 150, button='left') will click the left mouse button at
the coordinates (100, 150), while pyautogui.click(200, 250, button='right')
will perform a right-click at (200, 250).

Enter the following into the interactive shell:

>>> import pyautogui
>>> pyautogui.click(10, 5) # Move mouse to (10, 5) and click.

You should see the mouse pointer move to near the top-left corner of
your screen and click once. A full “click” is defined as pushing a mouse but-
ton down and then releasing it back up without moving the cursor. You can
also perform a click by calling pyautogui.mouseDown(), which only pushes the
mouse button down, and pyautogui.mouseUp(), which only releases the button.
These functions have the same arguments as click(), and in fact, the click()
function is just a convenient wrapper around these two function calls.

As a further convenience, the pyautogui.doubleClick() function will per-
form two clicks with the left mouse button, while the pyautogui.rightClick()
and pyautogui.middleClick() functions will perform a click with the right and
middle mouse buttons, respectively.

Controlling the Keyboard and Mouse with GUI Automation 479

Dragging the Mouse
Dragging means moving the mouse while holding down one of the mouse
buttons. For example, you can move files between folders by dragging the
folder icons, or you can move appointments around in a calendar app.

PyAutoGUI provides the pyautogui.dragTo() and pyautogui.drag() func-
tions to drag the mouse cursor to a new location or a location relative to its
current one. The arguments for dragTo() and drag() are the same as moveTo()
and move(): the x-coordinate/horizontal movement, the y-coordinate/verti-
cal movement, and an optional duration of time. (macOS does not drag
correctly when the mouse moves too quickly, so passing a duration keyword
argument is recommended.)

To try these functions, open a graphics-drawing application such as
MS Paint on Windows, Paintbrush on macOS, or GNU Paint on Linux.
(If you don’t have a drawing application, you can use the online one at
https://sumopaint.com/.) I will use PyAutoGUI to draw in these applications.

With the mouse cursor over the drawing application’s canvas and the
Pencil or Brush tool selected, enter the following into a new file editor win-
dow and save it as spiralDraw.py:

import pyautogui, time
u time.sleep(5)
v pyautogui.click() # Click to make the window active.

distance = 300
change = 20
while distance > 0:

 w pyautogui.drag(distance, 0, duration=0.2) # Move right.
 x distance = distance – change
 y pyautogui.drag(0, distance, duration=0.2) # Move down.
 z pyautogui.drag(-distance, 0, duration=0.2) # Move left.

 distance = distance – change
 pyautogui.drag(0, -distance, duration=0.2) # Move up.

When you run this program, there will be a five-second delay u for
you to move the mouse cursor over the drawing program’s window with
the Pencil or Brush tool selected. Then spiralDraw.py will take control of the
mouse and click to make the drawing program’s window active v. The active
window is the window that currently accepts keyboard input, and the actions
you take—like typing or, in this case, dragging the mouse—will affect that
window. The active window is also known as the focused or foreground window.
Once the drawing program is active, spiralDraw.py draws a square spiral
pattern like the one on the left of Figure 20-2. While you can also create
a square spiral image by using the Pillow module discussed in Chapter 19,
creating the image by controlling the mouse to draw it in MS Paint lets you
make use of this program’s various brush styles, like in Figure 20-2 on the
right, as well as other advanced features, like gradients or the fill bucket.
You can preselect the brush settings yourself (or have your Python code
select these settings) and then run the spiral-drawing program.

480 Chapter 20

Figure 20-2: The results from the pyautogui.drag() example,
drawn with MS Paint’s different brushes

The distance variable starts at 200, so on the first iteration of the while
loop, the first drag() call drags the cursor 200 pixels to the right, taking
0.2 seconds w. distance is then decreased to 195 x, and the second drag()
call drags the cursor 195 pixels down y. The third drag() call drags the cur-
sor −195 horizontally (195 to the left) z, distance is decreased to 190, and
the last drag() call drags the cursor 190 pixels up. On each iteration, the
mouse is dragged right, down, left, and up, and distance is slightly smaller
than it was in the previous iteration. By looping over this code, you can
move the mouse cursor to draw a square spiral.

You could draw this spiral by hand (or rather, by mouse), but you’d
have to work slowly to be so precise. PyAutoGUI can do it in a few seconds!

N O T E 	 At the time of this writing, PyAutoGUI can’t send mouse clicks or keystrokes to certain
programs, such as antivirus software (to prevent viruses from disabling the software)
or video games on Windows (which use a different method of receiving mouse and
keyboard input). You can check the online documentation at https://pyautogui​
.readthedocs.io/ to see if these features have been added.

Scrolling the Mouse
The final PyAutoGUI mouse function is scroll(), which you pass an integer
argument for how many units you want to scroll the mouse up or down. The
size of a unit varies for each operating system and application, so you’ll have
to experiment to see exactly how far it scrolls in your particular situation.

https://pyautogui.readthedocs.io/
https://pyautogui.readthedocs.io/

Controlling the Keyboard and Mouse with GUI Automation 481

The scrolling takes place at the mouse cursor’s current position. Passing
a positive integer scrolls up, and passing a negative integer scrolls down.
Run the following in Mu Editor’s interactive shell while the mouse cursor
is over the Mu Editor window:

>>> pyautogui.scroll(200)

You’ll see Mu scroll upward if the mouse cursor is over a text field that
can be scrolled up.

Planning Your Mouse Movements
One of the difficulties of writing a program that will automate clicking the
screen is finding the x- and y-coordinates of the things you’d like to click.
The pyautogui.mouseInfo() function can help you with this.

The pyautogui.mouseInfo() function is meant to be called from the inter-
active shell, rather than as part of your program. It launches a small appli-
cation named MouseInfo that’s included with PyAutoGUI. The window for
the application looks like Figure 20-3.

Figure 20-3: The MouseInfo application’s window

Enter the following into the interactive shell:

>>> import pyautogui
>>> pyautogui.mouseInfo()

This makes the MouseInfo window appear. This window gives you infor-
mation about the mouse’s cursor current position, as well the color of the
pixel underneath the mouse cursor, as a three-integer RGB tuple and as a
hex value. The color itself appears in the color box in the window.

482 Chapter 20

To help you record this coordinate or pixel information, you can click
one of the eight Copy or Log buttons. The Copy All, Copy XY, Copy RGB,
and Copy RGB Hex buttons will copy their respective information to the
clipboard. The Log All, Log XY, Log RGB, and Log RGB Hex buttons will
write their respective information to the large text field in the window. You
can save the text in this log text field by clicking the Save Log button.

By default, the 3 Sec. Button Delay checkbox is checked, causing a
three-second delay between clicking a Copy or Log button and the copy-
ing or logging taking place. This gives you a short amount of time in which
to click the button and then move the mouse into your desired position.
It may be easier to uncheck this box, move the mouse into position, and
press the F1 to F8 keys to copy or log the mouse position. You can look at
the Copy and Log menus at the top of the MouseInfo window to find out
which key maps to which buttons.

For example, uncheck the 3 Sec. Button Delay, then move the mouse
around the screen while pressing the F6 button, and notice how the
x- and y-coordinates of the mouse are recorded in the large text field in
the middle of the window. You can later use these coordinates in your
PyAutoGUI scripts.

For more information on MouseInfo, review the complete documenta-
tion at https://mouseinfo.readthedocs.io/.

Working with the Screen
Your GUI automation programs don’t have to click and type blindly.
PyAutoGUI has screenshot features that can create an image file based
on the current contents of the screen. These functions can also return
a Pillow Image object of the current screen’s appearance. If you’ve been
skipping around in this book, you’ll want to read Chapter 17 and install
the pillow module before continuing with this section.

On Linux computers, the scrot program needs to be installed to
use the screenshot functions in PyAutoGUI. In a Terminal window, run
sudo apt-get install scrot to install this program. If you’re on Windows
or macOS, skip this step and continue with the section.

Getting a Screenshot
To take screenshots in Python, call the pyautogui.screenshot() function.
Enter the following into the interactive shell:

>>> import pyautogui
>>> im = pyautogui.screenshot()

The im variable will contain the Image object of the screenshot. You can
now call methods on the Image object in the im variable, just like any other
Image object. Chapter 19 has more information about Image objects.

Controlling the Keyboard and Mouse with GUI Automation 483

Analyzing the Screenshot
Say that one of the steps in your GUI automation program is to click a gray
button. Before calling the click() method, you could take a screenshot and
look at the pixel where the script is about to click. If it’s not the same gray
as the gray button, then your program knows something is wrong. Maybe
the window moved unexpectedly, or maybe a pop-up dialog has blocked the
button. At this point, instead of continuing—and possibly wreaking havoc
by clicking the wrong thing—your program can “see” that it isn’t clicking
the right thing and stop itself.

You can obtain the RGB color value of a particular pixel on the screen
with the pixel() function. Enter the following into the interactive shell:

>>> import pyautogui
>>> pyautogui.pixel((0, 0))
(176, 176, 175)
>>> pyautogui.pixel((50, 200))
(130, 135, 144)

Pass pixel() a tuple of coordinates, like (0, 0) or (50, 200), and it’ll tell
you the color of the pixel at those coordinates in your image. The return
value from pixel() is an RGB tuple of three integers for the amount of red,
green, and blue in the pixel. (There is no fourth value for alpha, because
screenshot images are fully opaque.)

PyAutoGUI’s pixelMatchesColor() function will return True if the pixel at
the given x- and y-coordinates on the screen matches the given color. The
first and second arguments are integers for the x- and y-coordinates, and
the third argument is a tuple of three integers for the RGB color the screen
pixel must match. Enter the following into the interactive shell:

>>> import pyautogui
u >>> pyautogui.pixel((50, 200))

(130, 135, 144)
v >>> pyautogui.pixelMatchesColor(50, 200, (130, 135, 144))

True
w >>> pyautogui.pixelMatchesColor(50, 200, (255, 135, 144))

False

After using pixel() to get an RGB tuple for the color of a pixel at
specific coordinates u, pass the same coordinates and RGB tuple to
pixelMatchesColor() v, which should return True. Then change a value in
the RGB tuple and call pixelMatchesColor() again for the same coordinates w.
This should return false. This method can be useful to call whenever your
GUI automation programs are about to call click(). Note that the color at
the given coordinates must exactly match. If it is even slightly different—for
example, (255, 255, 254) instead of (255, 255, 255)—then pixelMatchesColor()
will return False.

484 Chapter 20

Image Recognition
But what if you do not know beforehand where PyAutoGUI should click?
You can use image recognition instead. Give PyAutoGUI an image of what
you want to click, and let it figure out the coordinates.

For example, if you have previously taken a screenshot to capture the
image of a Submit button in submit.png, the locateOnScreen() function will
return the coordinates where that image is found. To see how locateOnScreen()
works, try taking a screenshot of a small area on your screen; then save the
image and enter the following into the interactive shell, replacing 'submit.png'
with the filename of your screenshot:

>>> import pyautogui
>>> b = pyautogui.locateOnScreen('submit.png')
>>> b
Box(left=643, top=745, width=70, height=29)
>>> b[0]
643
>>> b.left
643

The Box object is a named tuple that locateOnScreen() returns and has
the x-coordinate of the left edge, the y-coordinate of the top edge, the
width, and the height for the first place on the screen the image was found.
If you’re trying this on your computer with your own screenshot, your
return value will be different from the one shown here.

If the image cannot be found on the screen, locateOnScreen() returns None.
Note that the image on the screen must match the provided image perfectly
in order to be recognized. If the image is even a pixel off, locateOnScreen()
raises an ImageNotFoundException exception. If you’ve changed your screen
resolution, images from previous screenshots might not match the images
on your current screen. You can change the scaling in the display settings
of your operating system, as shown in Figure 20-4.

Figure 20-4: The scale display settings in Windows 10 (left) and macOS (right)

If the image can be found in several places on the screen, locateAllOnScreen()
will return a Generator object. Generators are beyond the scope of this book,

Controlling the Keyboard and Mouse with GUI Automation 485

but you can pass them to list() to return a list of four-integer tuples. There
will be one four-integer tuple for each location where the image is found on
the screen. Continue the interactive shell example by entering the following
(and replacing 'submit.png' with your own image filename):

>>> list(pyautogui.locateAllOnScreen('submit.png'))
[(643, 745, 70, 29), (1007, 801, 70, 29)]

Each of the four-integer tuples represents an area on the screen. In the
example above, the image appears in two locations. If your image is only
found in one area, then using list() and locateAllOnScreen() returns a list
containing just one tuple.

Once you have the four-integer tuple for the specific image you want to
select, you can click the center of this area by passing the tuple to click().
Enter the following into the interactive shell:

>>> pyautogui.click((643, 745, 70, 29))

As a shortcut, you can also pass the image filename directly to the
click() function:

>>> pyautogui.click('submit.png')

The moveTo() and dragTo() functions also accept image filename argu-
ments. Remember locateOnScreen() raises an exception if it can’t find the
image on the screen, so you should call it from inside a try statement:

try:
 location = pyautogui.locateOnScreen('submit.png')
except:
 print('Image could not be found.')

Without the try and except statements, the uncaught exception would
crash your program. Since you can’t be sure that your program will always
find the image, it’s a good idea to use the try and except statements when
calling locateOnScreen().

Getting Window Information
Image recognition is a fragile way to find things on the screen; if a single
pixel is a different color, then pyautogui.locateOnScreen() won’t find the
image. If you need to find where a particular window is on the screen,
it’s faster and more reliable to use PyAutoGUI’s window features.

N O T E 	 As of version 0.9.46, PyAutoGUI’s window features work only on Windows,
not on macOS or Linux. These features come from PyAutoGUI’s inclusion of
the PyGetWindow module.

486 Chapter 20

Obtaining the Active Window
The active window on your screen is the window currently in the fore-
ground and accepting keyboard input. If you’re currently writing code in
the Mu Editor, the Mu Editor’s window is the active window. Of all the win-
dows on your screen, only one will be active at a time.

In the interactive shell, call the pyautogui.getActiveWindow() function to
get a Window object (technically a Win32Window object when run on Windows).

Once you have that Window object, you can retrieve any of the object’s
attributes, which describe its size, position, and title:

left, right, top, bottom  A single integer for the x- or y-coordinate of the
window’s side

topleft, topright, bottomleft, bottomright  A named tuple of two integers
for the (x, y) coordinates of the window’s corner

midleft, midright, midleft, midright  A named tuple of two integers for
the (x, y) coordinate of the middle of the window’s side

width, height  A single integer for one of the window’s dimensions,
in pixels

size  A named tuple of two integers for the (width, height) of
the window

area  A single integer representing the area of the window, in pixels

center  A named tuple of two integers for the (x, y) coordinate of the
window’s center

centerx, centery  A single integer for the x- or y-coordinate of the
window’s center

box  A named tuple of four integers for the (left, top, width, height)
measurements of the window

title  A string of the text in the title bar at the top of the window

To get the window’s position, size, and title information from the window
object, for example, enter the following into the interactive shell:

>>> import pyautogui
>>> fw = pyautogui.getActiveWindow()
>>> fw
Win32Window(hWnd=2034368)
>>> str(fw)
'<Win32Window left="500", top="300", width="2070", height="1208", title="Mu
1.0.1 – test1.py">'
>>> fw.title
'Mu 1.0.1 – test1.py'
>>> fw.size
(2070, 1208)
>>> fw.left, fw.top, fw.right, fw.bottom
(500, 300, 2070, 1208)
>>> fw.topleft
(256, 144)

Controlling the Keyboard and Mouse with GUI Automation 487

>>> fw.area
2500560
>>> pyautogui.click(fw.left + 10, fw.top + 20)

You can now use these attributes to calculate precise coordinates within
a window. If you know that a button you want to click is always 10 pixels to
the right of and 20 pixels down from the window’s top-left corner, and the
window’s top-left corner is at screen coordinates (300, 500), then calling
pyautogui.click(310, 520) (or pyautogui.click(fw.left + 10, fw.top + 20) if fw
contains the Window object for the window) will click the button. This way,
you won’t have to rely on the slower, less reliable locateOnScreen() function
to find the button for you.

Other Ways of Obtaining Windows
While getActiveWindow() is useful for obtaining the window that is active
at the time of the function call, you’ll need to use some other function
to obtain Window objects for the other windows on the screen.

The following four functions return a list of Window objects. If they’re
unable to find any windows, they return an empty list:

pyautogui.getAllWindows()  Returns a list of Window objects for every vis-
ible window on the screen.

pyautogui.getWindowsAt(x, y)  Returns a list of Window objects for every
visible window that includes the point (x, y).

pyautogui.getWindowsWithTitle(title)  Returns a list of Window objects for
every visible window that includes the string title in its title bar.

pyautogui.getActiveWindow()  Returns the Window object for the window
that is currently receiving keyboard focus.

PyAutoGUI also has a pyautogui.getAllTitles() function, which returns
a list of strings of every visible window.

Manipulating Windows
Windows attributes can do more than just tell you the size and position of
the window. You can also set their values in order to resize or move the win-
dow. For example, enter the following into the interactive shell:

>>> import pyautogui
>>> fw = pyautogui.getActiveWindow()

u >>> fw.width # Gets the current width of the window.
1669

v >>> fw.topleft # Gets the current position of the window.
(174, 153)

w >>> fw.width = 1000 # Resizes the width.
x >>> fw.topleft = (800, 400) # Moves the window.

488 Chapter 20

First, we use the Window object’s attributes to find out information
about the window’s size u and position v. After calling these functions
in Mu Editor, the window should move x and become narrower w, as in
Figure 20-5.

Figure 20-5: The Mu Editor window before (top) and after (bottom) using the Window
object attributes to move and resize it

You can also find out and change the window’s minimized, maximized,
and activated states. Try entering the following into the interactive shell:

>>> import pyautogui
>>> fw = pyautogui.getActiveWindow()

u >>> fw.isMaximized # Returns True if window is maximized.
False

v >>> fw.isMinimized # Returns True if window is minimized.

Controlling the Keyboard and Mouse with GUI Automation 489

False
w >>> fw.isActive # Returns True if window is the active window.

True
x >>> fw.maximize() # Maximizes the window.

>>> fw.isMaximized
True

y >>> fw.restore() # Undoes a minimize/maximize action.
z >>> fw.minimize() # Minimizes the window.

>>> import time
>>> # Wait 5 seconds while you activate a different window:

{ >>> time.sleep(5); fw.activate()
| >>> fw.close() # This will close the window you're typing in.

The isMaximized u, isMinimized v, and isActive w attributes contain
Boolean values that indicate whether the window is currently in that state.
The maximize() x, minimize() z, activate() {, and restore() y methods
change the window’s state. After you maximize or minimize the window
with maximize() or minimize(), the restore() method will restore the window
to its former size and position.

The close() method | will close a window. Be careful with this method,
as it may bypass any message dialogs asking you to save your work before
quitting the application.

The complete documentation for PyAutoGUI’s window-controlling fea-
ture can be found at https://pyautogui.readthedocs.io/. You can also use these
features separately from PyAutoGUI with the PyGetWindow module, docu-
mented at https://pygetwindow.readthedocs.io/.

Controlling the Keyboard
PyAutoGUI also has functions for sending virtual keypresses to your com-
puter, which enables you to fill out forms or enter text into applications.

Sending a String from the Keyboard
The pyautogui.write() function sends virtual keypresses to the computer.
What these keypresses do depends on what window is active and what text
field has focus. You may want to first send a mouse click to the text field you
want in order to ensure that it has focus.

As a simple example, let’s use Python to automatically type the words
Hello, world! into a file editor window. First, open a new file editor window
and position it in the upper-left corner of your screen so that PyAutoGUI
will click in the right place to bring it into focus. Next, enter the following
into the interactive shell:

>>> pyautogui.click(100, 200); pyautogui.write('Hello, world!')

Notice how placing two commands on the same line, separated
by a semicolon, keeps the interactive shell from prompting you for
input between running the two instructions. This prevents you from

490 Chapter 20

accidentally bringing a new window into focus between the click() and
write() calls, which would mess up the example.

Python will first send a virtual mouse click to the coordinates (100,
200), which should click the file editor window and put it in focus. The
write() call will send the text Hello, world! to the window, making it look
like Figure 20-6. You now have code that can type for you!

Figure 20-6: Using PyAutogGUI to click the file editor window and type Hello, world!
into it

By default, the write() function will type the full string instantly.
However, you can pass an optional second argument to add a short pause
between each character. This second argument is an integer or float value
of the number of seconds to pause. For example, pyautogui.write('Hello,
world!', 0.25) will wait a quarter-second after typing H, another quarter-
second after e, and so on. This gradual typewriter effect may be useful for
slower applications that can’t process keystrokes fast enough to keep up
with PyAutoGUI.

For characters such as A or !, PyAutoGUI will automatically simulate
holding down the shift key as well.

Key Names
Not all keys are easy to represent with single text characters. For example,
how do you represent shift or the left arrow key as a single character? In
PyAutoGUI, these keyboard keys are represented by short string values
instead: 'esc' for the esc key or 'enter' for the enter key.

Instead of a single string argument, a list of these keyboard key strings
can be passed to write(). For example, the following call presses the A key,
then the B key, then the left arrow key twice, and finally the X and Y keys:

>>> pyautogui.write(['a', 'b', 'left', 'left', 'X', 'Y'])

Controlling the Keyboard and Mouse with GUI Automation 491

Because pressing the left arrow key moves the keyboard cursor, this will
output XYab. Table 20-1 lists the PyAutoGUI keyboard key strings that you
can pass to write() to simulate pressing any combination of keys.

You can also examine the pyautogui.KEYBOARD_KEYS list to see all possible
keyboard key strings that PyAutoGUI will accept. The 'shift' string refers
to the left shift key and is equivalent to 'shiftleft'. The same applies for
'ctrl', 'alt', and 'win' strings; they all refer to the left-side key.

Table 20-1: PyKeyboard Attributes

Keyboard key string Meaning

'a', 'b', 'c', 'A', 'B', 'C', '1', '2', '3',
'!', '@', '#', and so on

The keys for single characters

'enter' (or 'return' or '\n') The enter key
'esc' The esc key

'shiftleft', 'shiftright' The left and right shift keys

'altleft', 'altright' The left and right alt keys

'ctrlleft', 'ctrlright' The left and right ctrl keys

'tab' (or '\t') The tab key

'backspace', 'delete' The backspace and delete keys

'pageup', 'pagedown' The page up and page down keys

'home', 'end' The home and end keys

'up', 'down', 'left', 'right' The up, down, left, and right arrow keys

'f1', 'f2', 'f3', and so on The F1 to F12 keys

'volumemute', 'volumedown', 'volumeup' The mute, volume down, and volume up
keys (some keyboards do not have these
keys, but your operating system will still
be able to understand these simulated
keypresses)

'pause' The pause key

'capslock', 'numlock', 'scrolllock' The caps lock, num lock, and scroll lock
keys

'insert' The ins or insert key
'printscreen' The prtsc or print screen key

'winleft', 'winright' The left and right win keys (on Windows)
'command' The Command () key (on macOS)
'option' The option key (on macOS)

Pressing and Releasing the Keyboard
Much like the mouseDown() and mouseUp() functions, pyautogui.keyDown() and
pyautogui.keyUp() will send virtual keypresses and releases to the computer.
They are passed a keyboard key string (see Table 20-1) for their argument.
For convenience, PyAutoGUI provides the pyautogui.press() function, which
calls both of these functions to simulate a complete keypress.

492 Chapter 20

Run the following code, which will type a dollar sign character
(obtained by holding the shift key and pressing 4):

>>> pyautogui.keyDown('shift'); pyautogui.press('4'); pyautogui.keyUp('shift')

This line presses down shift, presses (and releases) 4, and then releases
shift. If you need to type a string into a text field, the write() function is
more suitable. But for applications that take single-key commands, the
press() function is the simpler approach.

Hotkey Combinations
A hotkey or shortcut is a combination of keypresses to invoke some applica-
tion function. The common hotkey for copying a selection is ctrl-C (on
Windows and Linux) or -C (on macOS). The user presses and holds the
ctrl key, then presses the C key, and then releases the C and ctrl keys. To
do this with PyAutoGUI’s keyDown() and keyUp() functions, you would have
to enter the following:

pyautogui.keyDown('ctrl')
pyautogui.keyDown('c')
pyautogui.keyUp('c')
pyautogui.keyUp('ctrl')

This is rather complicated. Instead, use the pyautogui.hotkey() function,
which takes multiple keyboard key string arguments, presses them in order,
and releases them in the reverse order. For the ctrl-C example, the code
would simply be as follows:

pyautogui.hotkey('ctrl', 'c')

This function is especially useful for larger hotkey combinations. In
Word, the ctrl-alt-shift-S hotkey combination displays the Style pane.
Instead of making eight different function calls (four keyDown() calls and
four keyUp() calls), you can just call hotkey('ctrl', 'alt', 'shift', 's').

Setting Up Your GUI Automation Scripts
GUI automation scripts are a great way to automate the boring stuff, but
your scripts can also be finicky. If a window is in the wrong place on a desk-
top or some pop-up appears unexpectedly, your script could be clicking on
the wrong things on the screen. Here are some tips for setting up your GUI
automation scripts:

•	 Use the same screen resolution each time you run the script so that the
position of windows doesn’t change.

•	 The application window that your script clicks should be maximized
so that its buttons and menus are in the same place each time you run
the script.

Controlling the Keyboard and Mouse with GUI Automation 493

•	 Add generous pauses while waiting for content to load; you don’t want
your script to begin clicking before the application is ready.

•	 Use locateOnScreen() to find buttons and menus to click, rather than
relying on XY coordinates. If your script can’t find the thing it needs
to click, stop the program rather than let it continue blindly clicking.

•	 Use getWindowsWithTitle() to ensure that the application window you
think your script is clicking on exists, and use the activate() method
to put that window in the foreground.

•	 Use the logging module from Chapter 11 to keep a log file of what
your script has done. This way, if you have to stop your script halfway
through a process, you can change it to pick up from where it left off.

•	 Add as many checks as you can to your script. Think about how it could
fail if an unexpected pop-up window appears or if your computer loses
its internet connection.

•	 You may want to supervise the script when it first begins to ensure that
it’s working correctly.

You might also want to put a pause at the start of your script so the user
can set up the window the script will click on. PyAutoGUI has a sleep() func-
tion that acts identically to time.sleep() (it just frees you from having to also
add import time to your scripts). There is also a countdown() function that
prints numbers counting down to give the user a visual indication that the
script will continue soon. Enter the following into the interactive shell:

>>> import pyautogui
>>> pyautogui.sleep(3) # Pauses the program for 3 seconds.
>>> pyautogui.countdown(10) # Counts down over 10 seconds.
10 9 8 7 6 5 4 3 2 1
>>> print('Starting in ', end=''); pyautogui.countdown(3)
Starting in 3 2 1

These tips can help make your GUI automation scripts easier to use
and more able to recover from unforeseen circumstances.

Review of the PyAutoGUI Functions
Since this chapter covered many different functions, here is a quick
summary reference:

moveTo(x, y)  Moves the mouse cursor to the given x and y coordinates.

move(xOffset, yOffset)  Moves the mouse cursor relative to its
current position.

dragTo(x, y)  Moves the mouse cursor while the left button is held
down.

drag(xOffset, yOffset)  Moves the mouse cursor relative to its current
position while the left button is held down.

click(x, y, button)  Simulates a click (left button by default).

494 Chapter 20

rightClick()  Simulates a right-button click.

middleClick()  Simulates a middle-button click.

doubleClick()  Simulates a double left-button click.

mouseDown(x, y, button)  Simulates pressing down the given button
at the position x, y.

mouseUp(x, y, button)  Simulates releasing the given button at the
position x, y.

scroll(units)  Simulates the scroll wheel. A positive argument scrolls
up; a negative argument scrolls down.

write(message)  Types the characters in the given message string.

write([key1, key2, key3])  Types the given keyboard key strings.

press(key)  Presses the given keyboard key string.

keyDown(key)  Simulates pressing down the given keyboard key.

keyUp(key)  Simulates releasing the given keyboard key.

hotkey([key1, key2, key3])  Simulates pressing the given keyboard key
strings down in order and then releasing them in reverse order.

screenshot()  Returns a screenshot as an Image object. (See Chapter 19
for information on Image objects.)

getActiveWindow(), getAllWindows(), getWindowsAt(), and getWindowsWithTitle() 
These functions return Window objects that can resize and reposition
application windows on the desktop.

getAllTitles()  Returns a list of strings of the title bar text of every
window on the desktop.

C A P TCH A S A ND COMPU T E R E T HICS

“Completely Automated Public Turing test to tell Computers and Humans
Apart” or “captchas” are those small tests that ask you to type the letters in
a distorted picture or click on photos of fire hydrants. These are tests that are
easy, if annoying, for humans to pass but nearly impossible for software to
solve. After reading this chapter, you can see how easy it is to write a script
that could, say, sign up for billions of free email accounts or flood users with
harassing messages. Captchas mitigate this by requiring a step that only a
human can pass.

However not all websites implement captchas, and these can be vulner-
able to abuse by unethical programmers. Learning to code is a powerful and
exciting skill, and you may be tempted to misuse this power for personal gain
or even just to show off. But just as an unlocked door isn’t justification for
trespass, the responsibility for your programs falls upon you, the programmer.
There is nothing clever about circumventing systems to cause harm, invade
privacy, or gain unfair advantage. I hope that my efforts in writing this book
enable you to become your most productive self, rather than a mercenary one.

Controlling the Keyboard and Mouse with GUI Automation 495

Project: Automatic Form Filler
Of all the boring tasks, filling out forms is the most dreaded of chores. It’s
only fitting that now, in the final chapter project, you will slay it. Say you
have a huge amount of data in a spreadsheet, and you have to tediously
retype it into some other application’s form interface—with no intern to do
it for you. Although some applications will have an Import feature that will
allow you to upload a spreadsheet with the information, sometimes it seems
that there is no other way than mindlessly clicking and typing for hours on
end. You’ve come this far in this book; you know that of course must be a way
to automate this boring task.

The form for this project is a Google Docs form that you can find at
https://autbor.com/form. It looks like Figure 20-7.

Figure 20-7: The form used for this project

At a high level, here’s what your program should do:

1.	 Click the first text field of the form.

2.	 Move through the form, typing information into each field.

3.	 Click the Submit button.

4.	 Repeat the process with the next set of data.

496 Chapter 20

This means your code will need to do the following:

1.	 Call pyautogui.click() to click the form and Submit button.

2.	 Call pyautogui.write() to enter text into the fields.

3.	 Handle the KeyboardInterrupt exception so the user can press ctrl-C
to quit.

Open a new file editor window and save it as formFiller.py.

Step 1: Figure Out the Steps
Before writing code, you need to figure out the exact keystrokes and mouse
clicks that will fill out the form once. The application launched by calling
pyautogui.mouseInfo() can help you figure out specific mouse coordinates.
You need to know only the coordinates of the first text field. After clicking
the first field, you can just press tab to move focus to the next field. This
will save you from having to figure out the x- and y-coordinates to click
for every field.

Here are the steps for entering data into the form:

1.	 Put the keyboard focus on the Name field so that pressing keys types
text into the field.

2.	 Type a name and then press tab.

3.	 Type a greatest fear and then press tab.

4.	 Press the down arrow key the correct number of times to select the wiz-
ard power source: once for wand, twice for amulet, three times for crystal
ball, and four times for money. Then press tab. (Note that on macOS,
you will have to press the down arrow key one more time for each
option. For some browsers, you may need to press enter as well.)

5.	 Press the right arrow key to select the answer to the RoboCop question.
Press it once for 2, twice for 3, three times for 4, or four times for 5 or
just press the spacebar to select 1 (which is highlighted by default). Then
press tab.

6.	 Type an additional comment and then press tab.

7.	 Press enter to “click” the Submit button.

8.	 After submitting the form, the browser will take you to a page where
you will need to follow a link to return to the form page.

Different browsers on different operating systems might work slightly
differently from the steps given here, so check that these keystroke combi-
nations work for your computer before running your program.

Step 2: Set Up Coordinates
Load the example form you downloaded (Figure 20-7) in a browser by
going to https://autbor.com/form.

Controlling the Keyboard and Mouse with GUI Automation 497

Make your source code look like the following:

#! python3
formFiller.py - Automatically fills in the form.

import pyautogui, time

TODO: Give the user a chance to kill the script.

TODO: Wait until the form page has loaded.

TODO: Fill out the Name Field.

TODO: Fill out the Greatest Fear(s) field.

TODO: Fill out the Source of Wizard Powers field.

TODO: Fill out the RoboCop field.

TODO: Fill out the Additional Comments field.

TODO: Click Submit.

TODO: Wait until form page has loaded.

TODO: Click the Submit another response link.

Now you need the data you actually want to enter into this form. In
the real world, this data might come from a spreadsheet, a plaintext file,
or a website, and it would require additional code to load into the program.
But for this project, you’ll just hardcode all this data in a variable. Add the
following to your program:

#! python3
formFiller.py - Automatically fills in the form.

--snip--

formData = [{'name': 'Alice', 'fear': 'eavesdroppers', 'source': 'wand',
 'robocop': 4, 'comments': 'Tell Bob I said hi.'},
 {'name': 'Bob', 'fear': 'bees', 'source': 'amulet', 'robocop': 4,
 'comments': 'n/a'},
 {'name': 'Carol', 'fear': 'puppets', 'source': 'crystal ball',
 'robocop': 1, 'comments': 'Please take the puppets out of the
 break room.'},
 {'name': 'Alex Murphy', 'fear': 'ED-209', 'source': 'money',
 'robocop': 5, 'comments': 'Protect the innocent. Serve the public
 trust. Uphold the law.'},
]

--snip--

498 Chapter 20

The formData list contains four dictionaries for four different names.
Each dictionary has names of text fields as keys and responses as values.
The last bit of setup is to set PyAutoGUI’s PAUSE variable to wait half a sec-
ond after each function call. Also, remind the user to click on the browser
to make it the active window. Add the following to your program after the
formData assignment statement:

pyautogui.PAUSE = 0.5
print('Ensure that the browser window is active and the form is loaded!')

Step 3: Start Typing Data
A for loop will iterate over each of the dictionaries in the formData list, pass-
ing the values in the dictionary to the PyAutoGUI functions that will virtu-
ally type in the text fields.

Add the following code to your program:

#! python3
formFiller.py - Automatically fills in the form.

--snip--

for person in formData:
 # Give the user a chance to kill the script.
 print('>>> 5-SECOND PAUSE TO LET USER PRESS CTRL-C <<<')

 u time.sleep(5)

--snip--

As a small safety feature, the script has a five-second pause u that gives
the user a chance to hit ctrl-C (or move the mouse cursor to the upper-
left corner of the screen to raise the FailSafeException exception) to shut
the program down in case it’s doing something unexpected. After the code
that waits to give the page time to load, add the following:

#! python3
formFiller.py - Automatically fills in the form.

--snip--

 u print('Entering %s info...' % (person['name']))
 v pyautogui.write(['\t', '\t'])

 # Fill out the Name field.
 w pyautogui.write(person['name'] + '\t')

 # Fill out the Greatest Fear(s) field.
 x pyautogui.write(person['fear'] + '\t')

--snip--

Controlling the Keyboard and Mouse with GUI Automation 499

We add an occasional print() call to display the program’s status in its
Terminal window to let the user know what’s going on u.

Since the form has had time to load, call pyautogui.write(['\t', '\t'])
to press tab twice and put the Name field into focus v. Then call write()
again to enter the string in person['name'] w. The '\t' character is added
to the end of the string passed to write() to simulate pressing tab, which
moves the keyboard focus to the next field, Greatest Fear(s). Another call
to write() will type the string in person['fear'] into this field and then tab to
the next field in the form x.

Step 4: Handle Select Lists and Radio Buttons
The drop-down menu for the “wizard powers” question and the radio
buttons for the RoboCop field are trickier to handle than the text fields.
To click these options with the mouse, you would have to figure out the
x- and y-coordinates of each possible option. It’s easier to use the keyboard
arrow keys to make a selection instead.

Add the following to your program:

#! python3
formFiller.py - Automatically fills in the form.

--snip--

 # Fill out the Source of Wizard Powers field.
 u if person['source'] == 'wand':
 v pyautogui.write(['down', '\t'] , 0.5)

 elif person['source'] == 'amulet':
 pyautogui.write(['down', 'down', '\t'] , 0.5)
 elif person['source'] == 'crystal ball':
 pyautogui.write(['down', 'down', 'down', '\t'] , 0.5)
 elif person['source'] == 'money':
 pyautogui.write(['down', 'down', 'down', 'down', '\t'] , 0.5)

 # Fill out the RoboCop field.
 w if person['robocop'] == 1:
 x pyautogui.write([' ', '\t'] , 0.5)

 elif person['robocop'] == 2:
 pyautogui.write(['right', '\t'] , 0.5)
 elif person['robocop'] == 3:
 pyautogui.write(['right', 'right', '\t'] , 0.5)
 elif person['robocop'] == 4:
 pyautogui.write(['right', 'right', 'right', '\t'] , 0.5)
 elif person['robocop'] == 5:
 pyautogui.write(['right', 'right', 'right', 'right', '\t'] , 0.5)

--snip--

Once the drop-down menu has focus (remember that you wrote code
to simulate pressing tab after filling out the Greatest Fear(s) field), press-
ing the down arrow key will move to the next item in the selection list.
Depending on the value in person['source'], your program should send a

500 Chapter 20

number of down arrow keypresses before tabbing to the next field. If the
value at the 'source' key in this user’s dictionary is 'wand' u, we simulate
pressing the down arrow key once (to select Wand) and pressing tab v.
If the value at the 'source' key is 'amulet', we simulate pressing the down
arrow key twice and pressing tab, and so on for the other possible answers.
The 0.5 argument in these write() calls add a half-second pause in between
each key so that our program doesn’t move too fast for the form.

The radio buttons for the RoboCop question can be selected with the
right arrow keys—or, if you want to select the first choice w, by just pressing
the spacebar x.

Step 5: Submit the Form and Wait
You can fill out the Additional Comments field with the write() function by
passing person['comments'] as an argument. You can type an additional '\t'
to move the keyboard focus to the next field or the Submit button. Once
the Submit button is in focus, calling pyautogui.press('enter') will simulate
pressing the enter key and submit the form. After submitting the form,
your program will wait five seconds for the next page to load.

Once the new page has loaded, it will have a Submit another response link
that will direct the browser to a new, empty form page. You stored the coor-
dinates of this link as a tuple in submitAnotherLink in step 2, so pass these
coordinates to pyautogui.click() to click this link.

With the new form ready to go, the script’s outer for loop can continue
to the next iteration and enter the next person’s information into the form.

Complete your program by adding the following code:

#! python3
formFiller.py - Automatically fills in the form.

--snip--

 # Fill out the Additional Comments field.
 pyautogui.write(person['comments'] + '\t')

 # "Click" Submit button by pressing Enter.
 time.sleep(0.5) # Wait for the button to activate.
 pyautogui.press('enter')

 # Wait until form page has loaded.
 print('Submitted form.')
 time.sleep(5)

 # Click the Submit another response link.
 pyautogui.click(submitAnotherLink[0], submitAnotherLink[1])

Controlling the Keyboard and Mouse with GUI Automation 501

Once the main for loop has finished, the program will have plugged
in the information for each person. In this example, there are only four
people to enter. But if you had 4,000 people, then writing a program to do
this would save you a lot of time and typing!

Displaying Message Boxes
The programs you’ve been writing so far all tend to use plaintext output
(with the print() function) and input (with the input() function). However,
PyAutoGUI programs will use your entire desktop as its playground. The
text-based window that your program runs in, whether it’s Mu or a Terminal
window, will probably be lost as your PyAutoGUI program clicks and interacts
with other windows. This can make getting input and output from the user
hard if the Mu or Terminal windows get hidden under other windows.

To solve this, PyAutoGUI offers pop-up message boxes to provide noti-
fications to the user and receive input from them. There are four message
box functions:

pyautogui.alert(text)  Displays text and has a single OK button.

pyautogui.confirm(text)  Displays text and has OK and Cancel buttons,
returning either 'OK' or 'Cancel' depending on the button clicked.

pyautogui.prompt(text)  Displays text and has a text field for the user
to type in, which it returns as a string.

pyautogui.password(text)  Is the same as prompt(), but displays asterisks
so the user can enter sensitive information such as a password.

These functions also have an optional second parameter that accepts a
string value to use as the title in the title bar of the message box. The func-
tions won’t return until the user has clicked a button on them, so they can
also be used to introduce pauses into your PyAutoGUI programs. Enter the
following into the interactive shell:

>>> import pyautogui
>>> pyautogui.alert('This is a message.', 'Important')
'OK'
>>> pyautogui.confirm('Do you want to continue?') # Click Cancel
'Cancel'
>>> pyautogui.prompt("What is your cat's name?")
'Zophie'
>>> pyautogui.password('What is the password?')
'hunter2'

The pop-up message boxes that these lines produce look like Figure 20-8.

502 Chapter 20

Figure 20-8: From top left to bottom right, the windows created by alert(), confirm(),
prompt(), and password()

These functions can be used to provide notifications or ask the user
questions while the rest of the program interacts with the computer
through the mouse and keyboard. The full online documentation can
be found at https://pymsgbox.readthedocs.io.

Summary
GUI automation with the pyautogui module allows you to interact with appli-
cations on your computer by controlling the mouse and keyboard. While
this approach is flexible enough to do anything that a human user can do,
the downside is that these programs are fairly blind to what they are click-
ing or typing. When writing GUI automation programs, try to ensure that
they will crash quickly if they’re given bad instructions. Crashing is annoy-
ing, but it’s much better than the program continuing in error.

You can move the mouse cursor around the screen and simulate mouse
clicks, keystrokes, and keyboard shortcuts with PyAutoGUI. The pyautogui
module can also check the colors on the screen, which can provide your
GUI automation program with enough of an idea of the screen contents to
know whether it has gotten offtrack. You can even give PyAutoGUI a screen-
shot and let it figure out the coordinates of the area you want to click.

You can combine all of these PyAutoGUI features to automate any
mindlessly repetitive task on your computer. In fact, it can be downright
hypnotic to watch the mouse cursor move on its own and to see text appear
on the screen automatically. Why not spend the time you saved by sitting
back and watching your program do all your work for you? There’s a certain
satisfaction that comes from seeing how your cleverness has saved you from
the boring stuff.

https://pymsgbox.readthedocs.io

Controlling the Keyboard and Mouse with GUI Automation 503

Practice Questions

1.	 How can you trigger PyAutoGUI’s fail-safe to stop a program?

2.	 What function returns the current resolution()?

3.	 What function returns the coordinates for the mouse cursor’s
current position?

4.	 What is the difference between pyautogui.moveTo() and pyautogui.move()?

5.	 What functions can be used to drag the mouse?

6.	 What function call will type out the characters of "Hello, world!"?

7.	 How can you do keypresses for special keys such as the keyboard’s left
arrow key?

8.	 How can you save the current contents of the screen to an image file
named screenshot.png?

9.	 What code would set a two-second pause after every PyAutoGUI
function call?

10.	 If you want to automate clicks and keystrokes inside a web browser,
should you use PyAutoGUI or Selenium?

11.	 What makes PyAutoGUI error-prone?

12.	 How can you find the size of every window on the screen that includes
the text Notepad in its title?

13.	 How can you make, say, the Firefox browser active and in front of every
other window on the screen?

Practice Projects
For practice, write programs that do the following.

Looking Busy
Many instant messaging programs determine whether you are idle, or away
from your computer, by detecting a lack of mouse movement over some
period of time—say, 10 minutes. Maybe you’re away from your computer but
don’t want others to see your instant messenger status go into idle mode.
Write a script to nudge your mouse cursor slightly every 10 seconds. The
nudge should be small and infrequent enough so that it won’t get in the way
if you do happen to need to use your computer while the script is running.

Using the Clipboard to Read a Text Field
While you can send keystrokes to an application’s text fields with pyautogui​
.write(), you can’t use PyAutoGUI alone to read the text already inside
a text field. This is where the Pyperclip module can help. You can use
PyAutoGUI to obtain the window for a text editor such as Mu or Notepad,

504 Chapter 20

bring it to the front of the screen by clicking on it, click inside the text field,
and then send the ctrl-A or -A hotkey to “select all” and ctrl-C or -C
hotkey to “copy to clipboard.” Your Python script can then read the clip-
board text by running import pyperclip and pyperclip.paste().

Write a program that follows this procedure for copying the text from a
window’s text fields. Use pyautogui.getWindowsWithTitle('Notepad') (or which-
ever text editor you choose) to obtain a Window object. The top and left
attributes of this Window object can tell you where this window is, while the
activate() method will ensure it is at the front of the screen. You can then
click the main text field of the text editor by adding, say, 100 or 200 pixels to
the top and left attribute values with pyautogui.click() to put the keyboard
focus there. Call pyautogui.hotkey('ctrl', 'a') and pyautogui.hotkey('ctrl',
'c') to select all the text and copy it to the clipboard. Finally, call pyperclip​
.paste() to retrieve the text from the clipboard and paste it into your Python
program. From there, you can use this string however you want, but just
pass it to print() for now.

Note that the window functions of PyAutoGUI only work on Windows
as of PyAutoGUI version 1.0.0, and not on macOS or Linux.

Instant Messenger Bot
Google Talk, Skype, Yahoo Messenger, AIM, and other instant messag-
ing applications often use proprietary protocols that make it difficult for
others to write Python modules that can interact with these programs.
But even these proprietary protocols can’t stop you from writing a GUI
automation tool.

The Google Talk application has a search bar that lets you enter a
username on your friend list and open a messaging window when you press
enter. The keyboard focus automatically moves to the new window. Other
instant messenger applications have similar ways to open new message
windows. Write a program that will automatically send out a notification
message to a select group of people on your friend list. Your program may
have to deal with exceptional cases, such as friends being offline, the chat
window appearing at different coordinates on the screen, or confirmation
boxes that interrupt your messaging. Your program will have to take screen-
shots to guide its GUI interaction and adopt ways of detecting when its vir-
tual keystrokes aren’t being sent.

N O T E 	 You may want to set up some fake test accounts so that you don’t accidentally spam
your real friends while writing this program.

Controlling the Keyboard and Mouse with GUI Automation 505

Game-Playing Bot Tutorial
There is a great tutorial titled “How to Build a Python Bot That Can Play Web
Games” that you can find a link to at https://nostarch.com/automatestuff2/. This
tutorial explains how to create a GUI automation program in Python that
plays a Flash game called Sushi Go Round. The game involves clicking the
correct ingredient buttons to fill customers’ sushi orders. The faster you fill
orders without mistakes, the more points you get. This is a perfectly suited
task for a GUI automation program—and a way to cheat to a high score!
The tutorial covers many of the same topics that this chapter covers but also
includes descriptions of PyAutoGUI’s basic image recognition features. The
source code for this bot is at https://github.com/asweigart/sushigoroundbot/ and
a video of the bot playing the game is at https://youtu.be/lfk_T6VKhTE.

A
I N S T A L L I N G

T H I R D - P A R T Y M O D U L E S

Many developers have written their own
modules, extending Python’s capabilities

beyond what is provided by the standard
library of modules packaged with Python.

The primary way to install third-party modules is to
use Python’s pip tool. This tool securely downloads
and installs Python modules onto your computer from https://pypi.python.org/,
the website of the Python Software Foundation. PyPI, or the Python Package
Index, is a sort of free app store for Python modules.

The pip Tool
While pip comes automatically installed with Python 3.4 and later on
Windows and macOS, you may have to install it separately on Linux. You
can see whether pip is already installed on Linux by running which pip3 in
a Terminal window. If it’s installed, you’ll see the location of pip3 displayed.
Otherwise, nothing will display. To install pip3 on Ubuntu or Debian Linux,

508 Appendix A

open a new Terminal window and enter sudo apt-get install python3-pip.
To install pip3 on Fedora Linux, enter sudo yum install python3-pip into
a Terminal window. You’ll need to enter the administrator password for
your computer.

The pip tool is run from a terminal (also called command line) window,
not from Python’s interactive shell. On Windows, run the “Command
Prompt” program from the Start menu. On macOS, run Terminal from
Spotlight. On Ubuntu Linux, run Terminal from Ubuntu Dash or press
ctrl-alt-T.

If pip’s folder is not listed in the PATH environment variable, you may
have to change directories in the terminal window with the cd command
before running pip. If you need to find out your username, run echo
%USERNAME% on Windows or whoami on macOS and Linux. Then run cd pip
folder, where pip’s folder is C:\Users\<USERNAME>\AppData\Local\Programs
\Python\Python37\Scripts on Windows. On macOS, it is in /Library/Frameworks
/Python.framework/Versions/3.7/bin/. On Linux, it is in /home/<USERNAME>
/.local/bin/. Then you’ll be in the right folder to run the pip tool.

Installing Third-Party Modules
The executable file for the pip tool is called pip on Windows and pip3
on macOS and Linux. From the command line, you pass it the command
install followed by the name of the module you want to install. For exam-
ple, on Windows you would enter pip install --user MODULE, where MODULE is
the name of the module.

Because future changes to these third-party modules may be backward
incompatible, I recommend that you install the exact versions used in this
book, as given later in this section. You can add -U MODULE==VERSION to the
end of the module name to install a particular version. Note that there
are two equal signs in this command line option. For example, pip install
--user -U send2trash==1.5.0 installs version 1.5.0 of the send2trash module.

You can install all of the modules covered in this book by downloading
the “requirements” files for your operating system from https://nostarch.com​
/automatestuff2/ and running one of the following commands:

•	 On Windows:

pip install --user –r automate-win-requirements.txt ––user

•	 On macOS:

pip3 install --user –r automate-mac-requirements.txt --user

•	 On Linux:

pip3 install --user –r automate-linux-requirements.txt --user

https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/

Installing Third-Party Modules 509

The following list contains the third-party modules used in this book
along with their versions. You can enter these commands separately if you
only want to install a few of these modules on your computer.

•	 pip install --user send2trash==1.5.0

•	 pip install --user requests==2.21.0

•	 pip install --user beautifulsoup4==4.7.1

•	 pip install --user selenium==3.141.0

•	 pip install --user openpyxl==2.6.1

•	 pip install --user PyPDF2==1.26.0

•	 pip install --user python-docx==0.8.10 (install python-docx, not docx)

•	 pip install --user imapclient==2.1.0

•	 pip install --user pyzmail36==1.0.4

•	 pip install --user twilio

•	 pip install --user ezgmail

•	 pip install --user ezsheets

•	 pip install --user pillow==6.0.0

•	 pip install --user pyobjc-framework-Quartz==5.2 (on macOS only)

•	 pip install --user pyobjc-core==5.2 (on macOS only)

•	 pip install --user pyobjc==5.2 (on macOS only)

•	 pip install --user python3-xlib==0.15 (on Linux only)

•	 pip install --user pyautogui

N O T E 	 For macOS users: The pyobjc module can take 20 minutes or longer to install, so
don’t be alarmed if it takes a while. You should also install the pyobjc-core module
first, which will reduce the overall installation time.

After installing a module, you can test that it installed successfully by
running import ModuleName in the interactive shell. If no error messages are
displayed, you can assume the module was installed successfully.

If you already have the module installed but would like to upgrade it to
the latest version available on PyPI, run pip install --user -U MODULE (or pip3
install --user -U MODULE on macOS and Linux). The --user option installs
the module in your home directory. This avoids potential permissions
errors you might encounter when trying to install for all users.

The latest versions of the Selenium and OpenPyXL modules tend to
have changes that are backward incompatible with the versions used in
this book. On the other hand, the Twilio, EZGmail, and EZSheets modules
interact with online services, and you might be required to install the latest
version of these modules with the pip install --user -U command.

510 Appendix A

W A R N I N G 	 The first edition of this book suggested using the sudo command if you encountered per-
mission errors while running pip: sudo pip install module. This is a bad practice, as
it installs modules to the Python installation used by your operating system. Your oper-
ating system may run Python scripts to carry out system-related tasks, and if you install
modules to this Python installation that conflict with its existing modules, you could
create hard-to-fix bugs. Never use sudo when installing Python modules.

Installing Modules for the Mu Editor
The Mu editor has its own Python environment, separate from the one that
typical Python installations have. To install modules so that you can use them
in scripts launched by Mu, you must bring up the Admin Panel by clicking
the gear icon in the lower-right corner of the Mu editor. In the window that
appears, click the Third Party Packages tab and follow the instructions for
installing modules on that tab. The ability to install modules into Mu is still
an early feature under development, so these instructions may change.

If you are unable to install modules using the Admin Panel, you can
also open a Terminal window and run the pip tool specific to the Mu
editor. You’ll have to use pip’s --target command line option to specify
Mu’s module folder. On Windows, this folder is C:\Users\<USERNAME>​
\AppData​\Local\Mu\pkgs. On macOS, this folder is /Applications/mu-editor​
.app/Contents​/Resources/app_packages. On Linux, you don’t need to enter
a --target argument; just run the pip3 command normally.

For example, after you download the requirements file for your operating
system from https://nostarch.com/automatestuff2/, run the following:

•	 On Windows:

pip install –r automate-win-requirements.txt --target "C:\Users\USERNAME\
AppData\Local\Mu\pkgs"

•	 On macOS:

pip3 install –r automate-mac-requirements.txt --target /Applications/
mu-editor.app/Contents/Resources/app_packages

•	 On Linux:

pip3 install --user –r automate-linux-requirements.txt

If you want to install only some of the modules, you can run the regular
pip (or pip3) command and add the --target argument.

B
R U N N I N G P R O G R A M S

If you have a program open in Mu,
running it is a simple matter of pressing

F5 or clicking the Run button at the top
of the window. This is an easy way to run

programs while writing them, but opening Mu to
run your finished programs can be a burden. There
are more convenient ways to execute Python scripts,
depending on which operating system you’re using.

Running Programs from the Terminal Window
When you open a terminal window (such as Command Prompt on Windows
or Terminal on macOS and Linux), you’ll see a mostly blank window into
which you can enter text commands. You can run your programs from the
terminal, but if you’re not used to it, using your computer through a termi-
nal (also called a command line) can be intimidating: unlike a graphical user
interface, it offers no hints about what you’re supposed to do.

512 Appendix B

To open a terminal window on Windows, click the Start button, enter
Command Prompt, and press enter. On macOS, click on the Spotlight icon
in the upper right, type Terminal, and press enter. On Ubuntu Linux, you
can press the win key to bring up Dash, type Terminal, and press enter. The
keyboard shortcut ctrl-alt-T will also open a terminal window on Ubuntu.

Just as the interactive shell has a >>> prompt, the terminal will display a
prompt for you to enter commands. On Windows, it will be the full path of
the folder you are currently in:

C:\Users\Al>your commands go here

On macOS, the prompt shows your computer’s name, a colon, the cur-
rent working directory (with your home folder represented as ~ for short),
and your username, followed by a dollar sign ($):

Als-MacBook-Pro:~ al$ your commands go here

On Ubuntu Linux, the prompt is similar to macOS’s, except it begins
with the username and an @ sign:

al@al-VirtualBox:~$ your commands go here

It’s possible to customize these prompts, but that’s beyond the scope
of this book.

When you enter a command, like python on Windows or python3 on
macOS and Linux, the terminal checks for a program with that name in the
folder you’re currently in. If it doesn’t find it there, it will check the folders
listed in the PATH environment variable. You can think of environment variables
as variables for your entire operating system. They’ll contain a few system
settings. To see the value stored in the PATH environment variable, run echo
%PATH% on Windows and echo $PATH on macOS and Linux. Here’s an example
on macOS:

Als-MacBook-Pro:~ al$ echo $PATH
/Library/Frameworks/Python.framework/Versions/3.7/bin:/usr/local/bin:/usr/
bin:/bin:/usr/sbin:/sbin

On macOS, the python3 program file is located in the /Library/Frameworks
/Python.framework/Versions/3.7/bin folder, so you don’t have to enter /Library
/Frameworks/Python.framework/Versions/3.7/bin/python3 or switch to that folder
first to run it; you can enter python3 from any folder, and the terminal will
find it in one of the PATH environment variable’s folders. Adding a program’s
folder to the PATH environment variable is a convenient shortcut.

If you want to run a .py program, you must enter python (or python3)
followed by the .py filename. This will run Python, and in turn Python will
run the code it finds in that .py file. After the Python program finishes,

Running Programs 513

you’ll return to the terminal prompt. For example, on Windows, a simple
“Hello, world!” program would look like this:

Microsoft Windows [Version 10.0.17134.648]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\Al>python hello.py
Hello, world!

C:\Users\Al>

Running python (or python3) without any filename will cause Python to
launch the interactive shell.

Running Python Programs on Windows
There are a few other ways you can run Python programs on Windows.
Instead of opening a terminal window to run your Python scripts, you
can press win-R to open the Run Dialog box and enter py C:\path\to\your​
\pythonScript.py, as shown in Figure B-1. The py.exe program is installed at
C:\Windows\py.exe, which is already in the PATH environment variable, and
typing the .exe file extension is optional when running programs.

Figure B-1: The Run dialog on Windows

The downside of this method is that you must enter the full path to your
script. Also, while running your Python script from the dialog box will open
a new terminal window to display its output, this window will automatically
close when the program ends, and you might miss some output.

You can solve these problems by creating a batch script, which is a
small text file with the .bat file extension that can run multiple terminal
commands, much like a shell script in macOS and Linux. You can use a
text editor such as Notepad to create these files.

To make a batch file, make a new text file containing a single line, like this:

@py.exe C:\path\to\your\pythonScript.py %*
@pause

514 Appendix B

Replace this path with the absolute path to your own program and save
this file with a .bat file extension (for example, pythonScript.bat). The @ sign
at the start of each command prevents it from being displayed in the ter-
minal window, and the %* forwards any command line arguments entered
after the batch filename to the Python script. The Python script, in turn,
reads the command line arguments in the sys.argv list. This batch file will
keep you from having to type the full absolute path for the Python program
every time you want to run it. In addition, @pause will add "Press any key to
continue..." after the end of the Python script to prevent the program’s win-
dow from disappearing too quickly. I recommend you place all your batch
and .py files in a single folder that already exists in the PATH environment
variable, such as C:\Users\<USERNAME>.

With a batch file set up to run your Python script, you don’t need to open
a terminal window and type the full file path and name of your Python script.
Instead, just press win-R, enter pythonScript (the full pythonScript.bat name isn’t
necessary), and press enter to run your script.

Running Python Programs on macOS
On macOS, you can create a shell script to run your Python scripts by creat-
ing a text file with the .command file extension. Create a new file in a text
editor such as TextEdit and add the following content:

#!/usr/bin/env bash
python3 /path/to/your/pythonScript.py

Save this file with the .command file extension in your home folder (for
example, on my computer it’s /Users/al). In a terminal window, make this
shell script executable by running chmod u+x yourScript.command. Now you will
be able to click the Spotlight icon (or press -space) and enter yourScript
.command to run the shell script, which in turn will run your Python script.

Running Python Programs on Ubuntu Linux
Running your Python scripts in Ubuntu Linux from the Dash menu
requires considerable setup. Let’s say we have a /home/al/example.py script
(your Python script could be in a different folder with a different filename)
that we want to run from Dash. First, use a text editor such as gedit to create
a new file with the following content:

[Desktop Entry]
Name=example.py
Exec=gnome-terminal -- /home/al/example.sh
Type=Application
Categories=GTK;GNOME;Utility;

Save this file to the /home/<al>/.local/share/applications folder (replacing
al with your own username) as example.desktop. If your text editor doesn’t

Running Programs 515

show the .local folder (because folders that begin with a period are consid-
ered hidden), you may have to save it to your home folder (such as /home/al)
and open a terminal window to move the file with the mv /home/al/example.
desktop /home/al/.local/share/applications command.

When the example.desktop file is in the /home/al/.local/share/applications
folder, you’ll be able to press the Windows key on your keyboard to bring up
Dash and type example.py (or whatever you put for the Name field). This opens
a new terminal window (specifically, the gnome-terminal program) that runs
the /home/al/example.sh shell script, which we’ll create next.

In the text editor, create a new file with the following content:

#!/usr/bin/env bash
python3 /home/al/example.py
bash

Save this file to /home/al/example.sh. This is a shell script: a script that
runs a series of terminal commands. This shell script will run our /home/al/
example.py Python script and then run the bash shell program. Without the
bash command on the last line, the terminal window would close as soon as
the Python script finishes and you’d miss any text that print() function calls
put on the screen.

You’ll need to add execute permissions to this shell script, so run the
following command from a terminal window:

al@ubuntu:~$ chmod u+x /home/al/example.sh

With the example.desktop and example.sh files set up, you’ll now be able to
run the example.py script by pressing the Windows key and entering example.
py (or whatever name you put in the Name field of the example.desktop file).

Running Python Programs with Assertions Disabled
You can disable the assert statements in your Python programs to gain a
slight performance improvement. When running Python from the termi-
nal, include the -O switch after python or python3 and before the name of the
.py file. This will run an optimized version of your program that skips the
assertion checks.

This appendix contains the answers to
the practice problems at the end of each

chapter. I highly recommend that you take
the time to work through these problems.

Programming is more than memorizing syntax and
a list of function names. As when learning a foreign
language, the more practice you put into it, the more you will get out of it.
There are many websites with practice programming problems as well. You
can find a list of these at https://nostarch.com/automatestuff2/.

When it comes to the practice projects, there is no one correct program.
As long as your program performs what the project asks for, you can consider
it correct. However, if you want to see examples of completed projects, they
are available in the “Download the files used in the book” link at https://
nostarch.com/automatestuff2/.

C
A N S W E R S T O T H E

P R A C T I C E Q U E S T I O N S

https://nostarch.com/automatestuff2

518 Appendix C

Chapter 1
1.	 The operators are +, -, *, and /. The values are 'hello', -88.8, and 5.

2.	 The variable is spam; the string is 'spam'. Strings always start and end
with quotes.

3.	 The three data types introduced in this chapter are integers, floating-
point numbers, and strings.

4.	 An expression is a combination of values and operators. All expressions
evaluate (that is, reduce) to a single value.

5.	 An expression evaluates to a single value. A statement does not.

6.	 The bacon variable is set to 20. The bacon + 1 expression does not
reassign the value in bacon (that would need an assignment statement:
bacon = bacon + 1).

7.	 Both expressions evaluate to the string 'spamspamspam'.

8.	 Variable names cannot begin with a number.

9.	 The int(), float(), and str() functions will evaluate to the integer,
floating-point number, and string versions of the value passed to them.

10.	 The expression causes an error because 99 is an integer, and only
strings can be concatenated to other strings with the + operator. The
correct way is I have eaten ' + str(99) + ' burritos.'.

Chapter 2
1.	 True and False, using capital T and F, with the rest of the word in

lowercase

2.	 and, or, and not

3.	 True and True is True.
True and False is False.
False and True is False.
False and False is False.
True or True is True.
True or False is True.
False or True is True.
False or False is False.
not True is False.
not False is True.

4.	 False

False

True

False

False

True

Answers to the Practice Questions 519

5.	 ==, !=, <, >, <=, and >=

6.	 == is the equal to operator that compares two values and evaluates to a
Boolean, while = is the assignment operator that stores a value in a variable.

7.	 A condition is an expression used in a flow control statement that evalu-
ates to a Boolean value.

8.	 The three blocks are everything inside the if statement and the lines
print('bacon') and print('ham').

print('eggs')
if spam > 5:
 print('bacon')
else:
 print('ham')
print('spam')

9.	 The code:

if spam == 1:
 print('Hello')
elif spam == 2:
 print('Howdy')
else:
 print('Greetings!')

10.	 Press ctrl-C to stop a program stuck in an infinite loop.

11.	 The break statement will move the execution outside and just after a
loop. The continue statement will move the execution to the start of
the loop.

12.	 They all do the same thing. The range(10) call ranges from 0 up to (but
not including) 10, range(0, 10) explicitly tells the loop to start at 0, and
range(0, 10, 1) explicitly tells the loop to increase the variable by 1 on
each iteration.

13.	 The code:

for i in range(1, 11):
 print(i)

and:

i = 1
while i <= 10:
 print(i)
 i = i + 1

14.	 This function can be called with spam.bacon().

520 Appendix C

Chapter 3
1.	 Functions reduce the need for duplicate code. This makes programs

shorter, easier to read, and easier to update.

2.	 The code in a function executes when the function is called, not when
the function is defined.

3.	 The def statement defines (that is, creates) a function.

4.	 A function consists of the def statement and the code in its def clause. A
function call is what moves the program execution into the function, and
the function call evaluates to the function’s return value.

5.	 There is one global scope, and a local scope is created whenever a
function is called.

6.	 When a function returns, the local scope is destroyed, and all the
variables in it are forgotten.

7.	 A return value is the value that a function call evaluates to. Like any
value, a return value can be used as part of an expression.

8.	 If there is no return statement for a function, its return value is None.

9.	 A global statement will force a variable in a function to refer to the
global variable.

10.	 The data type of None is NoneType.

11.	 That import statement imports a module named areallyourpetsnamederic.
(This isn’t a real Python module, by the way.)

12.	 This function could be called with spam.bacon().

13.	 Place the line of code that might cause an error in a try clause.

14.	 The code that could potentially cause an error goes in the try clause. The
code that executes if an error happens goes in the except clause.

Chapter 4
1.	 The empty list value, which is a list value that contains no items. This is

similar to how '' is the empty string value.

2.	 spam[2] = 'hello' (Notice that the third value in a list is at index 2
because the first index is 0.)

3.	 'd' (Note that '3' * 2 is the string '33', which is passed to int() before
being divided by 11. This eventually evaluates to 3. Expressions can be
used wherever values are used.)

4.	 'd' (Negative indexes count from the end.)

5.	 ['a', 'b']

6.	 1

7.	 [3.14, 'cat', 11, 'cat', True, 99]

8.	 [3.14, 11, 'cat', True]

Answers to the Practice Questions 521

9.	 The operator for list concatenation is +, while the operator for replica-
tion is *. (This is the same as for strings.)

10.	 While append() will add values only to the end of a list, insert() can add
them anywhere in the list.

11.	 The del statement and the remove() list method are two ways to remove
values from a list.

12.	 Both lists and strings can be passed to len(), have indexes and slices, be
used in for loops, be concatenated or replicated, and be used with the
in and not in operators.

13.	 Lists are mutable; they can have values added, removed, or changed.
Tuples are immutable; they cannot be changed at all. Also, tuples are
written using parentheses, (and), while lists use the square brackets,
[and].

14.	 (42,) (The trailing comma is mandatory.)

15.	 The tuple() and list() functions, respectively

16.	 They contain references to list values.

17.	 The copy.copy() function will do a shallow copy of a list, while the
copy.deepcopy() function will do a deep copy of a list. That is, only copy​
.deepcopy() will duplicate any lists inside the list.

Chapter 5
1.	 Two curly brackets: {}

2.	 {'foo': 42}

3.	 The items stored in a dictionary are unordered, while the items in a list
are ordered.

4.	 You get a KeyError error.

5.	 There is no difference. The in operator checks whether a value exists as
a key in the dictionary.

6.	 The 'cat' in spam checks whether there is a 'cat' key in the dictionary,
while 'cat' in spam.values() checks whether there is a value 'cat' for
one of the keys in spam.

7.	 spam.setdefault('color', 'black')

8.	 pprint.pprint()

Chapter 6
1.	 Escape characters represent characters in string values that would

otherwise be difficult or impossible to type into code.

2.	 \n is a newline; \t is a tab.

3.	 The \\ escape character will represent a backslash character.

522 Appendix C

4.	 The single quote in Howl's is fine because you’ve used double quotes to
mark the beginning and end of the string.

5.	 Multiline strings allow you to use newlines in strings without the \n
escape character.

6.	 The expressions evaluate to the following:

•	 'e'

•	 'Hello'

•	 'Hello'

•	 'lo, world!

7.	 The expressions evaluate to the following:

•	 'HELLO'

•	 True

•	 'hello'

8.	 The expressions evaluate to the following:

•	 ['Remember,', 'remember,', 'the', 'fifth', 'of', 'November.']

•	 'There-can-be-only-one.'

9.	 The rjust(), ljust(), and center() string methods, respectively

10.	 The lstrip() and rstrip() methods remove whitespace from the left and
right ends of a string, respectively.

Chapter 7
1.	 The re.compile() function returns Regex objects.

2.	 Raw strings are used so that backslashes do not have to be escaped.

3.	 The search() method returns Match objects.

4.	 The group() method returns strings of the matched text.

5.	 Group 0 is the entire match, group 1 covers the first set of parentheses,
and group 2 covers the second set of parentheses.

6.	 Periods and parentheses can be escaped with a backslash: \., \(, and \).

7.	 If the regex has no groups, a list of strings is returned. If the regex has
groups, a list of tuples of strings is returned.

8.	 The | character signifies matching “either, or” between two groups.

9.	 The ? character can either mean “match zero or one of the preceding
group” or be used to signify non-greedy matching.

10.	 The + matches one or more. The * matches zero or more.

11.	 The {3} matches exactly three instances of the preceding group. The
{3,5} matches between three and five instances.

12.	 The \d, \w, and \s shorthand character classes match a single digit,
word, or space character, respectively.

13.	 The \D, \W, and \S shorthand character classes match a single character
that is not a digit, word, or space character, respectively.

Answers to the Practice Questions 523

14.	 The .* performs a greedy match, and the .*? performs a non-greedy
match.

15.	 Either [0-9a-z] or [a-z0-9]

16.	 Passing re.I or re.IGNORECASE as the second argument to re.compile() will
make the matching case insensitive.

17.	 The . character normally matches any character except the newline
character. If re.DOTALL is passed as the second argument to re.compile(),
then the dot will also match newline characters.

18.	 The sub() call will return the string 'X drummers, X pipers, five rings,
X hens'.

19.	 The re.VERBOSE argument allows you to add whitespace and comments
to the string passed to re.compile().

20.	 re.compile(r'^\d{1,3}(,\d{3})*$') will create this regex, but other regex
strings can produce a similar regular expression.

21.	 re.compile(r'[A-Z][a-z]*\sWatanabe')

22.	 re.compile(r'(Alice|Bob|Carol)\s(eats|pets|throws)\s(apples|cats
|baseballs)\.', re.IGNORECASE)

Chapter 8
1.	 No. PyInputPlus is a third-party module and doesn’t come with the

Python Standard Library.

2.	 This optionally makes your code shorter to type: you can type pyip​
.inputStr() instead of pyinputplus.inputStr().

3.	 The inputInt() function returns an int value, while the inputFloat()
function returns a float value. This is the difference between returning
4 and 4.0.

4.	 Call pyip.inputint(min=0, max=99).

5.	 A list of regex strings that are either explicitly allowed or denied

6.	 The function will raise RetryLimitException.

7.	 The function returns the value 'hello'.

Chapter 9
1.	 Relative paths are relative to the current working directory.

2.	 Absolute paths start with the root folder, such as / or C:\ .

3.	 On Windows, it evaluates to WindowsPath('C:/Users/Al'). On other operat-
ing systems, it evaluates to a different kind of Path object but with the
same path.

4.	 The expression 'C:/Users' / 'Al' results in an error, since you can’t use
the / operator to join two strings.

5.	 The os.getcwd() function returns the current working directory. The
os.chdir() function changes the current working directory.

524 Appendix C

6.	 The . folder is the current folder, and .. is the parent folder.

7.	 C:\bacon\eggs is the dir name, while spam.txt is the base name.

8.	 The string 'r' for read mode, 'w' for write mode, and 'a' for
append mode

9.	 An existing file opened in write mode is erased and completely
overwritten.

10.	 The read() method returns the file’s entire contents as a single string
value. The readlines() method returns a list of strings, where each
string is a line from the file’s contents.

11.	 A shelf value resembles a dictionary value; it has keys and values, along
with keys() and values() methods that work similarly to the dictionary
methods of the same names.

Chapter 10
1.	 The shutil.copy() function will copy a single file, while shutil.copytree()

will copy an entire folder, along with all its contents.

2.	 The shutil.move() function is used for renaming files as well as
moving them.

3.	 The send2trash functions will move a file or folder to the recycle bin,
while shutil functions will permanently delete files and folders.

4.	 The zipfile.ZipFile() function is equivalent to the open() function; the
first argument is the filename, and the second argument is the mode to
open the ZIP file in (read, write, or append).

Chapter 11
1.	 assert spam >= 10, 'The spam variable is less than 10.'

2.	 Either assert eggs.lower() != bacon.lower() 'The eggs and bacon variables
are the same!' or assert eggs.upper() != bacon.upper(), 'The eggs and
bacon variables are the same!'

3.	 assert False, 'This assertion always triggers.'

4.	 To be able to call logging.debug(), you must have these two lines at the
start of your program:

import logging
logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s -
%(levelname)s - %(message)s')

Answers to the Practice Questions 525

5.	 To be able to send logging messages to a file named programLog.txt
with logging.debug(), you must have these two lines at the start of
your program:

import logging
>>> logging.basicConfig(filename='programLog.txt', level=logging.DEBUG,
format=' %(asctime)s - %(levelname)s - %(message)s')

6.	 DEBUG, INFO, WARNING, ERROR, and CRITICAL

7.	 logging.disable(logging.CRITICAL)

8.	 You can disable logging messages without removing the logging func-
tion calls. You can selectively disable lower-level logging messages. You
can create logging messages. Logging messages provides a timestamp.

9.	 The Step In button will move the debugger into a function call. The
Step Over button will quickly execute the function call without step-
ping into it. The Step Out button will quickly execute the rest of the
code until it steps out of the function it currently is in.

10.	 After you click Continue, the debugger will stop when it has reached
the end of the program or a line with a breakpoint.

11.	 A breakpoint is a setting on a line of code that causes the debugger to
pause when the program execution reaches the line.

12.	 To set a breakpoint in Mu, click the line number to make a red dot
appear next to it.

Chapter 12
1.	 The webbrowser module has an open() method that will launch a web

browser to a specific URL, and that’s it. The requests module can down-
load files and pages from the web. The BeautifulSoup module parses
HTML. Finally, the selenium module can launch and control a browser.

2.	 The requests.get() function returns a Response object, which has a text
attribute that contains the downloaded content as a string.

3.	 The raise_for_status() method raises an exception if the download had
problems and does nothing if the download succeeded.

4.	 The status_code attribute of the Response object contains the HTTP
status code.

5.	 After opening the new file on your computer in 'wb' “write binary”
mode, use a for loop that iterates over the Response object’s iter_content()
method to write out chunks to the file. Here’s an example:

saveFile = open('filename.html', 'wb')
for chunk in res.iter_content(100000):
 saveFile.write(chunk)

526 Appendix C

6.	 F12 brings up the developer tools in Chrome. Pressing ctrl-shift-C
(on Windows and Linux) or -option-C (on OS X) brings up the
developer tools in Firefox.

7.	 Right-click the element in the page and select Inspect Element from
the menu.

8.	 '#main'

9.	 '.highlight'

10.	 'div div'

11.	 'button[value="favorite"]'

12.	 spam.getText()

13.	 linkElem.attrs

14.	 The selenium module is imported with from selenium import webdriver.

15.	 The find_element_* methods return the first matching element as a
WebElement object. The find_elements_* methods return a list of all match-
ing elements as WebElement objects.

16.	 The click() and send_keys() methods simulate mouse clicks and key-
board keys, respectively.

17.	 Calling the submit() method on any element within a form submits
the form.

18.	 The forward(), back(), and refresh() WebDriver object methods simulate
these browser buttons.

Chapter 13
1.	 The openpyxl.load_workbook() function returns a Workbook object.

2.	 The sheetnames attribute contains a Worksheet object.

3.	 Run wb['Sheet1'].

4.	 Use wb.active.

5.	 sheet['C5'].value or sheet.cell(row=5, column=3).value

6.	 sheet['C5'] = 'Hello' or sheet.cell(row=5, column=3).value = 'Hello'

7.	 cell.row and cell.column

8.	 They hold the highest column and row with values in the sheet, respec-
tively, as integer values.

9.	 openpyxl.cell.column_index_from_string('M')

10.	 openpyxl.cell.get_column_letter(14)

11.	 sheet['A1':'F1']

12.	 wb.save('example.xlsx')

13.	 A formula is set the same way as any value. Set the cell’s value attribute
to a string of the formula text. Remember that formulas begin with
the = sign.

14.	 When calling load_workbook(), pass True for the data_only keyword argument.

Answers to the Practice Questions 527

15.	 sheet.row_dimensions[5].height = 100

16.	 sheet.column_dimensions['C'].hidden = True

17.	 Freeze panes are rows and columns that will always appear on the
screen. They are useful for headers.

18.	 openpyxl.chart.Reference(), openpyxl.chart.Series(), openpyxl.chart​
.BarChart(), chartObj.append(seriesObj), and add_chart()

Chapter 14
1.	 To access Google Sheets, you need a credentials file, a token file for

Google Sheets, and a token file for Google Drive.

2.	 EZSheets has ezsheets.Spreadsheet and ezsheets.Sheet objects.

3.	 Call the downloadAsExcel() Spreadsheet method.

4.	 Call the ezsheets.upload() function and pass the filename of the
Excel file.

5.	 Access ss['Students']['B2'].

6.	 Call ezsheets.getColumnLetterOf(999).

7.	 Access the rowCount and columnCount properties of the Sheet object.

8.	 Call the delete() Sheet method. This is only permanent if you pass the
permanent=True keyword argument.

9.	 The createSpreadsheet() function and createSheet() Spreadsheet method
will create Spreadsheet and Sheet objects, respectively.

10.	 EZSheets will throttle your method calls.

Chapter 15
1.	 A File object returned from open()

2.	 Read-binary ('rb') for PdfFileReader() and write-binary ('wb') for
PdfFileWriter()

3.	 Calling getPage(4) will return a Page object for page 5, since page 0 is
the first page.

4.	 The numPages variable stores an integer of the number of pages in the
PdfFileReader object.

5.	 Call decrypt('swordfish').

6.	 The rotateClockwise() and rotateCounterClockwise() methods. The
degrees to rotate is passed as an integer argument.

7.	 docx.Document('demo.docx')

8.	 A document contains multiple paragraphs. A paragraph begins on a
new line and contains multiple runs. Runs are contiguous groups of
characters within a paragraph.

9.	 Use doc.paragraphs.

10.	 A Run object has these variables (not a Paragraph).

528 Appendix C

11.	 True always makes the Run object bolded and False makes it always not
bolded, no matter what the style’s bold setting is. None will make the Run
object just use the style’s bold setting.

12.	 Call the docx.Document() function.

13.	 doc.add_paragraph('Hello there!')

14.	 The integers 0, 1, 2, 3, and 4

Chapter 16
1.	 In Excel, spreadsheets can have values of data types other than strings;

cells can have different fonts, sizes, or color settings; cells can have
varying widths and heights; adjacent cells can be merged; and you
can embed images and charts.

2.	 You pass a File object, obtained from a call to open().

3.	 File objects need to be opened in read-binary ('rb') for reader objects
and write-binary ('wb') for writer objects.

4.	 The writerow() method

5.	 The delimiter argument changes the string used to separate cells
in a row. The lineterminator argument changes the string used to
separate rows.

6.	 json.loads()

7.	 json.dumps()

Chapter 17
1.	 A reference moment that many date and time programs use. The

moment is January 1, 1970, UTC.

2.	 time.time()

3.	 time.sleep(5)

4.	 It returns the closest integer to the argument passed. For example,
round(2.4) returns 2.

5.	 A datetime object represents a specific moment in time. A timedelta
object represents a duration of time.

6.	 Run datetime.datetime(2019, 1, 7).weekday(), which returns 0. This
means Monday, as the datetime module uses 0 for Monday, 1 for Tuesday,
and so on up to 6 for Sunday.

7.	 threadObj = threading.Thread(target=spam)

threadObj.start()

8.	 Make sure that code running in one thread does not read or write the
same variables as code running in another thread.

Answers to the Practice Questions 529

Chapter 18
1.	 SMTP and IMAP, respectively

2.	 smtplib.SMTP(), smtpObj.ehlo(), smptObj.starttls(), and smtpObj.login()

3.	 imapclient.IMAPClient() and imapObj.login()

4.	 A list of strings of IMAP keywords, such as 'BEFORE <date>', 'FROM
<string>', or 'SEEN'

5.	 Assign the variable imaplib._MAXLINE a large integer value, such as 10000000.

6.	 The pyzmail module reads downloaded emails.

7.	 The credentials.json and token.json files tell the EZGmail module which
Google account to use when accessing Gmail.

8.	 A message represents a single email, while a back-and-forth conversa-
tion involving multiple emails is a thread.

9.	 Include the 'has:attachment' text in the string you pass to search().

10.	 You will need the Twilio account SID number, the authentication token
number, and your Twilio phone number.

Chapter 19
1.	 An RGBA value is a tuple of 4 integers, each ranging from 0 to 255. The

four integers correspond to the amount of red, green, blue, and alpha
(transparency) in the color.

2.	 A function call to ImageColor.getcolor('CornflowerBlue', 'RGBA') will
return (100, 149, 237, 255), the RGBA value for that color.

3.	 A box tuple is a tuple value of four integers: the left-edge x-coordinate,
the top-edge y-coordinate, the width, and the height, respectively.

4.	 Image.open('zophie.png')

5.	 imageObj.size is a tuple of two integers, the width and the height.

6.	 imageObj.crop((0, 50, 50, 50)). Notice that you are passing a box tuple to
crop(), not four separate integer arguments.

7.	 Call the imageObj.save('new_filename.png') method of the Image object.

8.	 The ImageDraw module contains code to draw on images.

9.	 ImageDraw objects have shape-drawing methods such as point(), line(),
or rectangle(). They are returned by passing the Image object to the
ImageDraw.Draw() function.

Chapter 20
1.	 Move the mouse to the upper-left corner of the screen, that is, the

(0, 0) coordinates.

2.	 pyautogui.size() returns a tuple with two integers, for the width and
height of the screen.

530 Appendix C

3.	 pyautogui.position() returns a tuple with two integers, for the x- and
y-coordinates of the mouse cursor.

4.	 The moveTo() function moves the mouse to absolute coordinates on
the screen, while the move() function moves the mouse relative to the
mouse’s current position.

5.	 pyautogui.dragTo() and pyautogui.drag()

6.	 pyautogui.typewrite('Hello, world!')

7.	 Either pass a list of keyboard key strings to pyautogui.write() (such as
'left') or pass a single keyboard key string to pyautogui.press().

8.	 pyautogui.screenshot('screenshot.png')

9.	 pyautogui.PAUSE = 2

10.	 You should use Selenium for controlling a web browser instead of
PyAutoGUI.

11.	 PyAutoGUI clicks and types blindly and cannot easily find out if it’s
clicking and typing into the correct windows. Unexpected pop-up
windows or errors can throw the script off track and require you to
shut it down.

12.	 Call the pyautogui.getWindowsWithTitle('Notepad') function.

13.	 Run w = pyatuogui.getWindowsWithTitle('Firefox'), and then run
w.activate().

Symbols
= (assignment) operator, 9
+= (augmented addition assignment)

operator, 87
/= (augmented division assignment)

operator, 87
%= (augmented modulus assignment)

operator, 87
*= (augmented multiplication

assignment) operator, 87
-= (augmented subtraction assignment)

operator, 87
\ (backslash)

escape character, 130–131
line continuation character, 92

{} (braces)
in dictionaries, 111
greedy vs. nongreedy matching,

171, 176
matching specific repetitions with,

170–171
^ (caret symbol)

matching beginning of string, 174
negative character classes, 174

: (colon), 29, 30, 35, 44, 80
$ (dollar sign), 174–175
. (dot character), 206–207
.* (dot-star character), 175
" (double quotes), 130
== (equal to) operator, 23, 24
** (exponent) operator, 5
/ (forward slash), 202–203

division operator, 5
> (greater than) operator, 23
>= (greater than or equal to)

operator, 23
(hash character), 13, 132
// (integer division/floored quotient)

operator, 5
< (less than) operator, 23
<= (less than or equal to) operator, 23
% (modulus/remainder) operator, 5

* (multiplication) operator, 5
!= (not equal to) operator, 23
() (parentheses), 5, 14, 59, 96, 166
| (pipe character), 168
+ (plus sign)

addition operator, 5
concatenation operator, 7, 81

? (question mark), 168–169
' (single quote), 7, 130
[] (square brackets), 78
* (star character), 169
- (subtraction operator), 5
''' (triple quotes), 131, 132
_ (underscore), 11, 173

A
absolute path, 206, 209
abspath() function (os.path module), 209
activate() function (PyAutoGUI), 489
active sheet, 302, 304
add_break() method (Docx), 366
add_heading() method (Docx), 366
add_paragraph() method (Docx),

364, 365
add_picture() method (Docx), 367
add_run() method (Docx), 365
Adding a Logo project, 460–465
Adding Bullets to Wiki Markup project,

147–149
addition operator (+), 5
addPage() method (PyPDF2), 351–352
algebraic chess notation, 119
alpha transparency, 448
and binary operator, 25
API (application programming

interface), 381, 383
append() list method, 114, 89
arguments

function, 13, 58, 59
keyword, 62

argv variable (sys module), 145
ASCIIbetical order, 91

I N D E X

532 Index

assertions, 253–254, 513
assignment (=) operator, 9
assignment statement, 9, 81
asterisk, 169
attributes, 48, 275
augmented assignment operators, 87
Automatic Form Filler project, 495–501

B
Backing Up a Folder project, 243–246
back() method (Selenium), 297
backslash (\), 92, 131–132
BarChart() function (OpenPyXL),

211–212
basename() function (os.path module),

211–212
basicConfig() function (logging

module), 256
Beautiful Soup, 279. See also bs4

module
binary files, 347, 215
binary operators

and, 25
and comparison operators, 26–27
not, 26
or, 26

bitwise or operator, 179
blocking execution, 392
blocks of code, 27
Boolean data type, 22, 85

binary operators, 25–26
“truthy” and “falsey” values, 43
using binary and comparison

operators, 26–27
box tuple, 450
braces ({})

in dictionaries, 111
greedy vs. nongreedy matching,

171, 176
matching specific repetitions with,

170–171
break statement

overview, 39
using in for loop, 44

browser, opening using webbrowser
module, 268

bs4 module
creating object from HTML, 280
finding element with select()

method, 280

getting attribute, 282
overview, 279

built-in functions, 47

C
calling functions, 13
call stack, 63–65
camelcase, 11
caret symbol (^)

matching beginning of string, 174
negative character classes, 174

Cascading Style Sheets (CSS), 279
case sensitivity, 11, 135, 177
Cell data type (OpenPyXL), 304
cells, in Excel spreadsheets, 302

accessing, 304
writing values to, 314

center() string method, 140–142
chaining method calls, 457
character classes, 172

creating, 173
negative, 174
shorthand, 172

character styles, 361
Chart objects, 324
chdir() function (os module), 451, 205
chess, 119
Chrome, developer tools in, 276
clear() method

OpenPyXL, 342
Selenium, 294

click() function (PyAutoGUI), 478
clicking the mouse, 478
click() method (Selenium), 295
clipboard, copying and pasting,

143–144
close() File method, 216
Cm() method (OpenPyXL), 367
colon (:), 29, 30, 35, 44, 80
color values, RGBA, 448–449
column_index_from_string() function

(OpenPyXL), 306
columns, in Excel spreadsheets

setting height and width of, 321
slicing Worksheet objects to get Cell

objects, 306
Combining Select Pages from Many

PDFs project, 355–358
comma-delimited items, 78

Index 533

command line arguments, 145, 269,
384, 408

comma-separated values (CSV). See
CSV (comma-separated
values)

comments
multiline, 132
overview, 13

comparison operators, 23–25
equal to (==), 23, 24
greater than (>), 23
greater than or equal to (>=), 23
less than (<), 23
less than or equal to (<=), 23
not equal to (!=), 23

compile() function (re module), 165
compressed files

creating ZIP files, 239
extracting ZIP files, 238–239
overview, 237
reading ZIP files, 238

computer screen
coordinates of, 448, 476
resolution of, 476

concatenation operator (+)
lists, 81
strings, 7

concurrency issues, 403
conditions, 27
continue statement

overview, 40
using in for loop, 44

convertAddress() function
(EZSheets), 338

Conway’s Game of Life project,
102–106

Coordinated Universal Time
(UTC), 390

coordinates
of computer screen, 448, 476
of an image, 449–450

copy() function
copy module, 101
Pyperclip, 143–144

copy() method (Pillow), 454
copy module

copy() function, 101
deepcopy() function, 101

copyTo() function (EZSheets), 343
copytree() function (shutil

module), 232
countdown() function (PyAutoGUI), 493

Countdown project, 410
cProfile module, 391
crashes, programs, 4
create() method (Twilio), 439, 440
createSheet() function (EZSheets), 342
create_sheet() method (OpenPyXL), 314
createSpreadsheet() function

(EZSheets), 336
critical() function (logging

module), 256
CRITICAL logging level, 258
cron, 408
crop() method (Pillow), 453
CSS (Cascading Style Sheets), 279
CSV (comma-separated values)

defined, 371
delimiter for, 375
format overview, 371
line terminator for, 375
module, 372
reader objects, 373
reading data in loop, 374
writer objects, 374

current working directory, 205
cwd() method (pathlib module), 205

D
\D character class, 173
\d character class, 165, 173
data types

Booleans, 22
defined, 7
dictionaries, 111
floating-point numbers, 7
integers, 7
lists, 78
mutable vs. immutable, 94–95
None value, 61
strings, 7
tuples, 96

date arithmetic, 397
datetime module

datetime() function, 395, 400
datetime objects, 305, 395, 398, 399
fromtimestamp() function, 395, 400
now() function, 395
timedelta() function, 396, 400
total_seconds() method, 400

debug() function (logging module), 256
DEBUG logging level, 258

534 Index

debugging
assertions, 253–254
defined, 249
getting traceback as string, 251–252
logging, 255
in Mu, 260–264
raising exceptions, 250

decimal numbers. See floating-point
numbers

decode() method (imaplib module), 350
decrypt() function (PyPDF2), 350
deduplicate, 58
deepcopy() function (copy module), 101
def statement, 58
delete_messages() method (imaplib

module), 432, 433
deleting files/folders

permanently, 234
using send2trash module, 235

delimiter, 78, 375
del statement, 82, 90
dictionaries

get() method, 116
items() method, 114
keys() method, 114
lists vs., 112
nesting, 125
overview, 111–112
setdefault() method, 116
values() method, 114

directories. See folders
dirname() function (os.path module), 211
disable() function (logging module), 211
division (/) operator, 5
Document objects (Docx), 358
Docx module

add_break() method, 366
add_heading() method, 366
add_paragraph() method, 364, 365
add_picture() method, 367
add_run() method, 365
Document objects, 358
Font() function, 318
installing, 358
LineChart() function, 325
Paragraph objects, 349

dollar sign ($), 174–175
dot character (.), 206–207
dot-dot (..) folder, 206–207
dot (.) folder, 206–207
dot-star character (.*), 175

doubleClick() function
(PyAutoGUI), 478

double quotes ("), 130
downloadAsExcel() method

(EZSheets), 335
downloadAsHTML() method

(EZSheets), 335
downloadAsODS() method (EZSheets), 335
downloadAsPDF() method (EZSheets), 335
downloadAsTSV() method (EZSheets), 335
downloading

files from web, 273
web pages, 271–273

Downloading XKCD Comics project,
286–291

drag() function (PyAutoGUI), 479
dragging the mouse, 479
dragTo() function (PyAutoGUI), 479
Draw() function (Pillow), 465, 469
drawing on images

ellipses, 466
lines, 466
points, 466
polygons, 467
rectangles, 466
text, 468–469

dumps() function (json module), 383

E
ehlo() method (smtplib module),

421, 422
elements, HTML, 278
elif statement, 30
ellipse() method (Pillow), 466
else statements, 29, 51
emails

deleting, 424
disconnecting from server, 433
fetching, 424
IMAP, 424
marking message as read, 430
searching, 426
sending, 423
SMTP, 420

encodings, Unicode, 273
encrypt() function (PyPDF2), 350
endswith() string method, 138
enumerate() function, 86
epoch timestamp, 390, 399
equal to (==) operator, 23, 24

Index 535

error() function (logging module), 256
ERROR logging level, 258
errors

crashes and, 4
help for, xxxiv

escape characters, 130–131
evaluatation, 4, 60
Excel spreadsheets

application support, 301
charts in, 324
column width, 321
converting between column letters

and numbers, 306
creating documents, 313
creating worksheets, 314
deleting worksheets, 314
font styles, 318
formulas in, 319
freezing panes, 322–323
getting cell values, 304
getting rows and columns, 306
getting worksheet names, 304
merging and unmerging cells, 322
opening documents, 303
OpenPyXL, 302
overview, 301
reading files, 302
row height, 321
saving workbooks, 313
updating, 315
workbooks vs., 302
writing values to cells, 314

Exception objects, 251
exceptions

assertions and, 253–254
getting traceback as string, 251–253
handling, 71
raising, 250–251

except statement, 71–72
execution

defined, 28
pausing until specific time, 397
terminating, 49

exists() function (os.path module),
214, 215

exit codes, 407
exit() function (sys module), 402
exponent (**) operator, 5
expressions, 4
expunge() method (imaplib module), 432
extension, file, 201

extractText() method (PyPDF2), 349
EZGmail, 416–420
ezgmail module

init() function, 416
recent() function, 419
search() function, 419
send() function, 417
summary() function, 418
unread() function, 418

EZSheets
credentials and token files, 330
installing, 330
quotas, 343
revoking credentials, 332
Sheet objects, 336–337
Spreadsheet objects, 332–336

ezsheets module
convertAddress() function, 338
copyTo() function, 343
createSheet() function, 342
createSpreadsheet() function, 336
downloadAsExcel() method, 335
downloadAsHTML() method, 335
downloadAsODS() method, 335
downloadAsPDF() method, 335
downloadAsTSV() method, 335
getColumn() method, 340
getColumnLetterOf() function, 338
getColumnNumberOf() function, 338
getColumns() method, 340
getRow() method, 340
getRows() method, 340
listSpreadsheets() function, 336
Spreadsheet() function, 332
updateColumn() function, 340
updateColumns() function, 340
updateRow() function, 340
updateRows() function, 340
upload() function, 339

F
factory() function (Pyzmail), 425
FailSafeException exceptions, 475
False Boolean value, 22
“falsey” values, 43
Fetching Current Weather project,

383–387
fetch() method (imaplib module),

425, 430
file editor, 11

536 Index

file management
absolute vs. relative paths, 206, 209
backslash vs. forward slash,

202–203
compressed files, 237
creating directories, 207
current working directory, 205
opening files, 217
overview, 201
paths, 201–202
plaintext vs. binary files, 216
reading files, 217
renaming files, 233, 240–243
send2trash module, 235
shelve module, 219
shutil module, 232
walking directory trees, 236
writing files, 218

filename, 201
File objects, 217
findall() method (re module), 171
find_element_by_*() methods

(Selenium), 239
find_elements_by_*() methods

(Selenium), 239
Firefox, developer tools in, 277
Firefox() function (Selenium), 292
floating point numbers

float() function, 15
integer equivalence, 17
overview, 7
rounding, 17

flow control
blocks of code, 27
break statements, 39
conditions, 27
continue statements, 40
elif statements, 30
else statements, 29, 51
for loops, 44, 46, 51, 84, 114
if statements, 28, 51
overview, 27
while loops, 35, 46

folders, 205
absolute paths in, 206, 209
absolute vs. relative paths, 206, 209
backslash vs. forward slash,

202–203
copying, 232
creating, 207, 208
current working directory, 205
defined, 202

deleting permanently, 234
deleting using send2trash

module, 235
file sizes, 212
folder contents, 212
moving, 233
path validity, 214
root, 202, 206
renaming, 233
walking, 236

font data type, 318
Font() function (Docx), 318
font styles, in Excel spreadsheets, 318
form filler project, 495
Formulas (Excel), 319
for statements, 44, 46, 51, 84, 114
forward slash (/), 202–203

division operator, 5
freeze panes in Excel spreadsheets, 323
fromtimestamp() function (datetime

module), 395, 400
functions. See also names of individual

functions
arguments, 59
as “black box”, 70
built-in, 47
def statements, 59
exception handling, 71
keyword arguments, 62
None value and, 61
overview, 59
parameters, 59
return values, 60

G
Gauss, Carl Friedrich, 45
Generating Random Quizzes project,

221–226
getActiveWindow() function

(PyAutoGUI), 487
get_addresses() method (Pyzmail),

425, 431
getAllWindows() function

(PyAutoGUI), 487
getColumnLetterOf() function

(EZSheets), 338
getColumn() method (EZSheets), 340
getColumnNumberOf() function

(EZSheets), 338
getColumns() method (EZSheets), 340
getcwd() function (os module), 205
get() dictionary method, 116

Index 537

get() function (requests module), 271
getPage() method (PyPDF2), 349
get_payload() method (Pyzmail),

425, 432
getpixel() function (Pillow), 459
getRow() method (EZSheets), 340
getRows() method (EZSheets), 340
get_sheet_by_name() method

(OpenPyXL), 304
get_sheet_names() method

(OpenPyXL), 304
getsize() function (os.path module), 212
get_subject() method (Pyzmail),

425, 431
getWindowsAt() function

(PyAutoGUI), 487
getWindowsWithTitle() function

(PyAutoGUI), 487
GIF format, 451
global scope, 65, 66
global statement, 68
global variable, 65, 67, 68
Gmail, 416
Google Maps, 268
graphical user interface (GUI). See GUI

(graphical user interface)
greater than (>) operator, 23
greater than or equal to (>=)

operator, 23
greedy matching, 171, 176
group() method (re module), 166
groups, regex, 166
Guess the Number program, 49–51
GUI (graphical user interface)

controlling the keyboard
hotkey combinations, 492
key names, 490
pressing and releasing, 491
sending string from

keyboard, 489
controlling the mouse

clicking the mouse, 478
dragging the mouse, 479–480
moving the mouse, 477
scrolling the mouse, 480–481

determining mouse position,
477–478

image recognition, 484
installing PyAutoGUI module, 474
overview, 473
screenshots, 482
stopping program, 475

H
hash character (#), 13, 132
headings, Word document, 366
help, with programming

asking on forums, xxxiii–xxxix
online, xxxvi–xxxviii

hotkey combinations, 492
hotkey() function (PyAutoGUI), 492
How to Keep an Idiot Busy for Hours

project, 194–195
HTML (Hypertext Markup Language)

attributes, 275
browser developer tools and, 278
finding elements, 280
learning resources, 274
overview, 274
viewing page source, 275–276

I
IDLE (integrated development and

learning environment),
xxxv

if statements, 28, 51
images

adding logo to, 460–465
box tuples, 450
color values in, 448–449
coordinates in, 449–450
copying and pasting in, 454
cropping, 453
drawing on

ellipses, 466
lines, 466
points, 466
polygons, 467
rectangles, 466
text, 468–469

flipping, 457–459
opening with Pillow, 450
pixel manipulation, 459
recognition of, 484
resizing, 456
RGBA color values, 448–449
rotating, 457–459
transparent pixels, 465

IMAP (Internet Message Access
Protocol)

defined, 424
deleting messages, 432
disconnecting from server, 433

538 Index

IMAP (Internet Message Access
Protocol) (continued)

fetching messages, 430
folders, 426
logging into server, 426
searching messages, 426

IMAPClient() function (imaplib module),
424, 426

IMAPClient module, 424
imaplib module

decode() method, 350
delete_messages() method, 432, 433
expunge() method, 432
fetch() method, 425, 430
IMAPClient() function, 424, 426
list_folders() method, 426
login() method, 424, 426
logout() method, 425, 433
search() method, 425, 427, 429
select_folder() method, 425,

427, 430
immutable data types, 94
importing modules, 47
import statement, 47
Inches() method (OpenPyXL), 367
indentation, 27
IndexError exception, 79, 112
indexes, 78–79, 80, 132

for dictionaries. See keys
for lists, 78
for strings, 132
negative, 80

index() method, 88
infinite loop, 39
info() function (logging module), 256
INFO logging level, 258
init() function (EZGmail), 416
in operator, 116, 84, 93, 133
in place modification, 89
inputBool() function (PyInputPlus), 189
inputChoice() function

(PyInputPlus), 189
inputCustom() function

(PyInputPlus), 193
inputDatetime() function

(PyInputPlus), 189
inputEmail() function (PyInputPlus), 189
inputFilepath() function

(PyInputPlus), 189
inputFloat() function

(PyInputPlus), 190
input() function, 14

inputInt() function (PyInputPlus), 190
inputMenu() function (PyInputPlus), 189
inputNum() function (PyInputPlus),

189, 190
inputPassword() function

(PyInputPlus), 189
inputStr() function (PyInputPlus), 189
input validation, 137, 187
inputYesNo() function (PyInputPlus), 189
insert() list method, 89
integer division/floored quotient (//)

operator, 5
integers

floating-point equivalence, 17
int() function, 15
overview, 7

interactive development environment
(IDLE), xxxv

interactive shell, xxxv–xxxvi, 3
Internet Explorer, developer tools

in, 276
Internet Message Access Protocol

(IMAP). See IMAP (Internet
Message Access Protocol)

int() function, 15
isabs() function (os.path module), 209
isalnum() string method, 136
isalpha() string method, 136
isdecimal() string method, 136
isdir() function (os.path module), 215
isEncrypted() method (PyPDF2), 350
isfile() function (os.path module),

215, 214
islower() string method, 135
isspace() string method, 136
istitle() string method, 136
isupper() string method, 135–136
items() dictionary method, 114
iteration, 37
iter_content() method (Requests),

273–274

J
join() function (os.path module), 202
join() method (threading module), 405
join() string method, 138
JPEG format, 451
JSON (JavaScript Object Notation),

371, 381
json module

dumps() function, 383
loads() function, 382, 385

Index 539

justifying text, 140–141
“Just Text Me” Module project,

441–442

K
keyboard

hotkey combinations, 492
key names, 490
pressing and releasing, 491
sending string from keyboard, 489

KeyboardInterrupt exception, 41
keyDown() function (PyAutoGUI), 491
keys, dictionary, 111
keys() dictionary method, 114
keyUp() function (PyAutoGUI), 491
key-value pair, 111
keyword arguments, 62, 91

L
launchd, 408
launching programs

opening files with default
applications, 409

opening websites, 268
overview, 406
passing command line arguments,

145, 269, 384, 408
running Python scripts, 144
scheduling, 408

lazy matching. See non-greedy
matching

len() function, 14, 81, 84, 86
less than (<) operator, 23
less than or equal to (<=) operator, 23
LibreOffice, 302, 358
line breaks, Word documents, 366
LineChart() function (Docx), 325
line continuation character, 92
line() method (Pillow), 466
line terminator, 375
linked styles, Word documents, 361
Linux

backslash vs. forward slash, 202–203
cron, 402
installing Python, xxi
installing third-party modules,

507–510
starting IDLE, xxxiii
starting Mu, xxxii

listdir() function (os module), 212

list_folders() method (imaplib
module), 426

list() function, 97, 115, 373
list-like, 93, 114, 220
lists

append() method, 89
changing values using index, 81
concatenation, 81
dictionaries vs., 112
finding number of values using

len(), 81
index() method, 88
insert() method, 89
multiple assignment trick, 85
mutable vs. immutable data types,

94–95
negative indexes, 80
nesting, 125
overview, 78
remove() method, 90
replication, 81
sort() method, 90
using with for loops, 84

listSpreadsheets() function
(EZSheets), 336

ljust() string method, 140–142
loads() function (json module), 382, 385
load_workbook() function

(OpenPyXL), 303
local scope, 65, 67
local variable, 65, 66
locateAllOnScreen() function

(PyAutoGUI), 484
locateOnScreen() function

(PyAutoGUI), 484
logging levels

CRITICAL, 258
DEBUG, 258
ERROR, 258
INFO, 258
WARNING, 258

logging module
basicConfig() function, 256
critical() function, 256
debug() function, 256, 258
disable() function, 211
error() function, 256
info() function, 256
warning() function, 256

login() method
imaplib module, 424, 426
smtplib module, 421, 423

540 Index

logout() method (imaplib module),
425, 433

loops, 35
lower() string method, 135–136
lstrip() string method, 142

M
macOS

backslash vs. forward slash, 202–203
installing Python, xxxiii, xxxiv
installing third-party modules,

507–510
launchd, 408
opening files with default

applications, 409
open program, 410
pip tool on, 507–508
running Python programs, 514
starting IDLE, xxxv
starting Mu, xxxv
terminal window, 511–512

Magic 8 Ball example program, 92
makedirs() function (os module), 207
mapIt.py with the webbrowser Module

project, 268–270
matching

greedy, 171, 176
non-greedy, 171, 176

math operators, 4
addition (+), 5
division (/), 5
exponent (**), 5
integer division/floored

quotient (//), 5
modulus/remainder (%), 5
multiplication (*), 5
order of operations, 5

maximize() function (PyAutoGUI), 489
merge_cells() method (OpenPyXL), 322
methods. See also names of individual

methods
chaining calls, 457
defined, 88
dictionary, 114–117
list, 88–92
string, 134–143

Microsoft Windows. See Windows
(operating system)

middleClick() function
(PyAutoGUI), 478

minimize() function (PyAutoGUI), 489

mkdir() method (pathlib module), 208
modules. See also names of individual

modules
importing, 47
third-party, installing, 507–510

modulus/remainder (%) operator, 5
Monty Python, xxx, 10
mouse

clicking, 478
determining position, 477–478
dragging, 479–480
moving, 477
scrolling, 480–481

mouseDown() function (PyAutoGUI), 478
mouseUp() function (PyAutoGUI), 478
move() function

PyAutoGUI, 477
shutil module, 233

moveTo() function (PyAutoGUI), 477
moving files/folders, 233
multi-clipboard

Multi-Clipboard Automatic
Messages project, 144–146

Updatable Multi-Clipboard,
226–228

multiline comments, 132
multiline strings, 131–132
multiple assignment trick, 85
multiplication operator (*), 5
Multiplication Quiz project, 196–197
Multithreaded XKCD Downloader

project, 403–406
multithreading

concurrency issues, 403
join() method, 405
overview, 401
passing arguments to threads, 402
start() method, 401
Thread() function, 401

mutable data types, 94

N
NameError exception, 14
namelist() method (zipfile

module), 238
negative character classes, 174
negative indexes, 80
nested dictionaries and lists, 118, 125
nested for loops, 357, 456
new() method (Image module), 452
None value, 61

Index 541

non-greedy matching, 171, 176
not binary operator, 26
not in operator, 116, 84, 93, 133
now() function (datetime module), 395

O
open() function, 216, 217, 218, 224,

373, 374
webbrowser module, 268

open() method (Pillow), 450, 451,
456, 457

OpenOffice, 302
open program, 410
OpenPyXL, 302
openpyxl module

BarChart() function, 211–212
clear() method, 342
Cm() method, 367
column_index_from_string()

function, 306
create_sheet() method, 314
get_sheet_by_name() method, 304
get_sheet_names() method, 304
Inches() method, 367
load_workbook() function, 303
merge_cells() method, 322
Reference() function, 324
remove_sheet() method, 314
unmerge_cells() method, 322

operators. See also names of individual
operators

augmented assignment, 87
binary, 25
Boolean, 25
comparison, 23
defined, 4
math, 5
unary, 26

or binary operator, 25
order of operations, 5
origin coordinate, 449
os module

chdir() function, 451, 205
getcwd() function, 205
listdir() function, 212
makedirs() function, 207
walk() function, 236
rmdir() function, 234
unlink() function, 234

os.path module
abspath() function, 209
basename() function, 211–212

dirname() function, 211
exists() function, 214, 215
isabs() function, 209
isdir() function, 215
isfile() function, 215, 214
join() function, 202
split() function, 211

P
Page data type (PyPDF2), 349
Paragraph objects (Docx), 349
paragraph styles, 361
parameters, functions, 59
parentheses (()), 5, 14, 59, 96, 166
parsing, 279
partition() string method, 140
passing arguments, 59
paste() function (Pyperclip), 143, 144
paste() method (Pillow), 454
pathlib module

cwd() method, 205
mkdir() method, 208

paths
absolute vs. relative, 206
backslash vs. forward slash,

202–203
current working directory, 205
overview, 201

PAUSE variable (PyAutoGUI), 498
PdfFileReader data type, 348
PDF (Portable Document Format) files

adding pages to, 355
Combining Select Page from Many

PDFs Project, 355–358
copying pages in, 351
creating, 350
decrypting, 349
encrypting, 354
extracting text from, 348
format overview, 347, 348
overlaying pages, 353
rotating pages, 352

PdfFileWriter data type, 350
pformat() function (pprint module),

118, 311, 220
Phone Number and Email Address

Extractor project, 179–184
Pig Latin project, 149–152
Pillow

copying and pasting in images, 454
cropping images, 453

542 Index

Pillow (continued)
drawing on images

ellipses, 466
lines, 466
points, 466
polygons, 467
rectangles, 466
text, 468–469

flipping images, 457–459
module, 450
opening images, 450
pixel manipulation, 459
resizing images, 456
RGBA color values, 448–449
rotating images, 457–459
transparent pixels, 465

pillow module
copy() method, 454
crop() method, 453
Draw() function, 465, 469
ellipse() method, 466
getpixel() function, 459
line() method, 466
open() method, 450, 451, 456, 457
paste() method, 454
point() method, 466
polygon() method, 467
putpixel() function, 459
rectangle() method, 466
resize() method, 456–457
rotate() method 457, 458
text() method, 468, 469
textsize() method, 468
transpose() method, 458
truetype() function, 468

pipe (|) character, 168
pip tool, 507–508
pixel, 448
pixelMatchesColor() function

(PyAutoGUI), 483
plaintext files, 215
plus character (+), 170
PNG format, 451
point, 321
point() method (Pillow), 466
poll() method (threading module), 407
polygon() method (Pillow), 467
Popen() function (subprocess module),

406, 407, 409
Portable Document Format (PDF)

files. See PDF (Portable
Document Format) files

position() function (PyAutoGUI), 467
pprint module

pformat() function, 118, 311, 220
pprint() function, 118, 220, 381

precedence, 5
press() function (PyAutoGUI), 491
print() function, 13, 62
processes

defined, 406
opening files with default

applications, 409
passing command line arguments

to, 408
Popen() function (subprocess

module), 406, 407, 409
profiling code, 390
program execution, 28
projects

Adding a Logo, 460–465
Adding Bullets to Wiki Markup,

147–149
Automatic Form Filler, 495–501
Backing Up a Folder, 243–246
Combining Select Pages from Many

PDFs, 355–358
Conway’s Game of Life, 102–106
Downloading XKCD Comics,

286–291
Fetching Current Weather, 383–387
Generating Random Quizzes,

221–226
Guess the Number, 49–51
How to Keep an Idiot Busy for

Hours, 194–195
“Just Text Me” Module, 441–442
mapIt.py with the webbrowser

Module, 268–270
Multi-Clipboard Automatic

Messages, 144–146
Multiplication Quiz, 196–197
Multithreaded XKCD Downloader,

403–406
Phone Number and Email Address

Extractor, 179–184
Pig Latin, 149–152
Reading Data from a Spreadsheet,

308–313
Removing the Header from CSV

Files, 378–381
Renaming Files, 240–243
Rock, Paper, Scissors, 51–55

Index 543

Sending Member Dues Reminder
Emails, 433–437

Simple Countdown Program,
410–412

Super Stopwatch, 392–394
Updatable Multi-Clipboard,

226–228
Updating a Spreadsheet, 315–317
Zigzag, 72–74

putpixel() function (Pillow), 459
PyAutoGUI

FailSafeException exceptions, 475
functions, 493–494
overview, 474

pyautogui module
activate() function, 489
click() function, 478
countdown() function, 493
doubleClick() function, 478
drag() function, 479
dragTo() function, 479
getActiveWindow() function, 487
getAllWindows() function, 487
getWindowsAt() function, 487
getWindowsWithTitle() function, 487
hotkey() function, 492
keyDown() function, 491–492
keyUp() function, 491–492
locateAllOnScreen() function, 484
locateOnScreen() function, 484
maximize() function, 489
middleClick() function, 478
minimize() function, 489
mouseDown() function, 478
mouseUp() function, 478
move() function, 477
moveTo() function, 477
pixelMatchesColor() function, 483
position() function, 477
press() function, 491
restore() function, 489
rightClick() function, 478
screenshot() function, 482
scroll() function, 480
size() function, 476
write() function, 489

PyInputPlus, 188
pyinputplus module

inputBool() function, 189
inputChoice() function, 189
inputCustom() function, 193
inputDatetime() function, 189

inputEmail() function, 189
inputFilepath() function, 189
inputFloat() function, 190
inputInt() function, 190
inputMenu() function, 189
inputNum() function, 189, 190
inputPassword() function, 189
inputStr() function, 189
inputYesNo() function, 189

PyPDF2, 348
pypdf2 module

addPage() method, 351–352
decrypt() function, 350
encrypt() function, 350
extractText() method, 349
getPage() method, 349
isEncrypted() method, 350
rotateClockwise() method, 457, 458
rotateCounterClockwise() method,

457, 458
Pyperclip, 143
pyperclip module

copy() function, 143
paste() function, 143

Python
downloading, xxxiii–xxxiv
help, xxxvi–xxxix
installing, xxxiv
interactive shell, xxxv–xxxvi
interpreter, xxxiv
overview, xxx
starting IDLE, xxxv
starting Mu, xxxiv–xxxv

python-docx module, 358
Pyzmail, 424
pyzmail module

get_addresses() method, 425, 431
get_payload() method, 425, 432
get_subject() method, 425, 431
factory() function, 425

Q
question mark (?), 168–169
quit() method (smtplib module),

421, 424

R
raise_for_status() method (requests

module), 272
raise statement, 250

544 Index

random module
randint() function, 50, 60
sample() function, 224
shuffle() function, 224

range() function, 44, 46, 84, 86
raw strings, 131
read() method, 216, 217, 373
reader() method (csv module), 373, 379
Reading Data from a Spreadsheet

project, 308–313
readlines() method, 218, 373
recent() function (EZGmail), 419
rectangle() method (Pillow), 466
Reddit, xxxviii, 381
Reference() function (OpenPyXL), 324
references, 100
refresh() method (Selenium), 297
regular expressions

beginning of string matches, 174
case sensitivity, 177
character classes, 172
defined, 161
dot-star character (.*), 175
end of string matches, 174
extracting phone numbers and

email addresses, 179–184
findall() method, 171
finding patterns without, 162
greedy matching, 171, 176
group() method, 165
groups, 165
HTML and, 277
matching specific repetitions,

170–171
multiple argument for compile()

function, 165
non-greedy matching, 171, 176
one or more matches, 170
optional matching, 168
spreading over multiple lines, 178
substituting strings using, 178
symbols, 177
using parentheses, 166
using pipe characters, 168
verbose mode, 178
wildcard character, 175
zero or more matches, 169

relational operators, 23
relative path, 206, 209
relpath() function, 209
remainder/modulus (%) operator, 5

re module
compile() function, 165
findall() method, 171
group() method, 166
search() method, 165
sub() method, 178

remove() method, 90
remove_sheet() method

(OpenPyXL), 314
Removing the Header from CSV Files

project, 378–381
renaming files/folders, 233, 240–243
replication

of lists, 81
string, 8

requests module
get() function, 271
raise_for_status() method, 272

resize() method (Pillow), 456–457
resolution of computer screen, 476
Response objects (Requests), 271
restore() function (PyAutoGUI), 489
return statement, 60, 62
return values, function, 60
reverse keyword argument, 91
RGBA color values, 448–449
rightClick() function (PyAutoGUI), 478
rjust() method, 140–142
rmdir() function (os module), 234
rmtree() function (shutil module), 234
rock, paper, scissors, 51–55
rotateClockwise() method (PyPDF2)

457, 458
rotateCounterClockwise() method

(PyPDF2) 457, 458
rotate() method (Pillow) 457, 458
rotating images, 475–479
rounding numbers, 17
rows, in Excel spreadsheets, 321
rstrip() string method, 142
Run objects, 362

S
\S character class, 173
\s character class, 173
%s directive, 134
Safari, developer tools in, 277
sample() function (random module), 224
save()method

document, 364, 365
workbook, 313, 314

Index 545

scopes, 65
screenshot() function (PyAutoGUI), 482
screenshots

analyzing, 483
getting, 482

scroll() function (PyAutoGUI), 480
search() function (EZGmail), 419
search() method

imaplib module, 425, 427, 429
re module, 165

select_folder() method (imaplib
module), 425, 427, 430

Selenium, 291
selenium module

back() method, 297
clear() method, 294
click() method, 295
Firefox() function, 292
refresh() method, 297
send_keys() method, 295
submit() method, 295

send() function (EZGmail), 417
Sending Member Dues Reminder

Emails project, 433–437
send_keys() method (Selenium), 295
sendmail() method (smtplib module)

421, 424
Series objects, 324
setdefault() dictionary method, 116, 311
shebang line, 145
sheet, 302
shelve module, 219
Short Message Service (SMS). See SMS

(Short Message Service)
shuffle() function (random module), 224
shutil module

deleting files/folders, 234
moving files/folders, 233
overview, 232
renaming files/folders, 233, 240–243

SID, Twilio account, 439
Simple Countdown Program project,

410–412
Simple Mail Transfer Protocol

(SMTP), 420
single quote ('), 7, 130
single-threaded program, 401
size() function (PyAutoGUI), 476
sleep() function, 391, 392, 397, 400
slices

getting sublists with, 80
getting substrings with, 133

SMS (Short Message Service)
gateway service, 438
sending messages, 439–441
Twilio service, 438–441

SMTP (Simple Mail Transfer
Protocol), 420

SMTPAuthenticationError, 423
SMTP() function (smtplib module)

421, 422
SMTP_SSL() function (smtplib

module), 422
sort() method, 90
sound files, playing, 411
source code, xxx
split() function (os.path module), 90
split() string method, 90, 139
Spreadsheet() function, 332
spreadsheets. See Excel spreadsheets
square brackets ([]), 78
Stack Overflow, xxxviii, 277, 292
standard library, 47, 189
star character (*), 169
start() method (threading module), 402
start program, 409
startswith() string method, 138
starttls() method (smtplib module),

421, 423
step argument, 46
strftime() function (time module),

398, 400
strings

center() method, 140–142
concatenation, 7
copying and pasting, 143–144
defined, 7
double quotes for, 130
endswith() method, 138
escape characters, 130–131
extracting PDF text as, 348
indexes for, 132
interpolation, 134
isalnum() method, 136
isalpha() method, 136
isdecimal() method, 136
islower() method, 135
isspace() method, 136
istitle() method, 136
isupper() method, 135
join() method, 138
literals, 130
ljust() method, 140–142
lower() method, 135, 136

546 Index

strings (continued)
lstrip() method, 142
multiline, 131
partition() method, 140
raw, 131
replication, 8
rjust() method, 140–142
rstrip() method, 142
slicing, 132
split() method, 138
startswith() method, 138
strip() method, 142
upper() method, 135

str() function, 15
strip() string method, 142
strptime() function, 399, 400
sub() method (re module), 178
submit() method (Selenium), 295
subtraction operator (-), 5
Sudoku, xxx
summary() function (EZGmail), 418
Super Stopwatch project, 392–394
syntax error

can’t assign to keyword, 23
EOL while scanning string literal, 7
invalid syntax, 6

sys module
argv variable, 145
exit() function, 402

T
Tag objects, 281
tags, HTML, 274
Task Scheduler, 408
text() method (Pillow), 468, 469
textsize() method (Pillow), 468
threading module

join() method, 405
poll() method, 407
start() method, 402
Thread object, 401, 404–406

throwaway code, xxviii
tic-tac-toe, 120
timedelta() function (datetime module),

396, 400
time module

overview, 390
sleep() function, 391
Super Stopwatch project, 392–394
time() function, 390, 400

TLS encryption, 422–423
top-level domain, 182
total_seconds() method (datetime

module), 400
transpose() method (Pillow), 458
triple quotes ('''), 131, 132
True Boolean value, 22
truetype() function (Pillow), 468
truth tables, 25–26
“truthy” values, 43
try statement, 71
tuple data type, 96
tuple() function, 97
Twilio, 439
twilio module

create() method, 439, 440
TwilioRestClient() function, 439, 440

type() function, 96

U
Ubuntu

installing Python, xxxiv
installing third-party modules,

507–510
pip tool on, 507–508
Popen() function, 407, 409
running Python programs, 514–515
starting IDLE, xxxv
starting Mu, xxxv
terminal window, 511–512

unary operators, 26
underscore (_), 11, 173
Unicode encodings, 273
Unix epoch, 390
unlink() function (os module), 234
unmerge_cells() method

(OpenPyXL), 322
unread() function (EZGmail), 418
updateColumn() function (EZSheets), 340
updateColumns() function

(EZSheets), 340
updateRow() function (EZSheets), 340
updateRows() function (EZSheets), 340
Updatable Multi-Clipboard, 226–228
Updating a Spreadsheet project,

315–317
upload() function (EZSheets), 339
upper() string method, 135–136
UTC (Coordinated Universal

Time), 390

Index 547

V
ValueError, 17, 76
values, defined, 4
values() dictionary method, 114
variables

assignment statements, 9, 81
defined, 9
global, 65
initialization, 10
local, 65
naming, 11
overwriting, 10
references, 100

verbose mode, regular expressions, 178
volumes, 202

W
\W character class, 173
\w character class, 173
wait() function (subprocess module), 407
walk() function (os module), 236
warning() function (logging

module), 256
WARNING logging level, 258
weather data, fetching, 383
web scraping

browser developer tools, 278
bs4 module, 279–283
downloading

files, 273
images, 288–289
pages, 271–273

and Google maps project, 268
HTML

finding elements, 280
learning resources, 274
overview, 274–275
viewing page source, 275–276

overview, 267
Requests module, 271
Selenium module

clicking buttons, 295
following links, 295
installing, 291
sending special keystrokes, 296
submitting forms, 295
using Firefox with, 291

webbrowser module, 268
WebDriver objects (Selenium), 292
WebElement objects (Selenium), 293
websites, opening from script, 268
while loop

overview, 35, 46
infinite, 39

wildcard character (*), 175
Windows (operating system)

backslash vs. forward slash,
202–203

installing Python, xxxiii–xxxiv
installing third-party modules,

507–510
opening files with default

applications, 409
pip tool on, 507–508
running Python programs, 513–514
starting IDLE, xxxv
starting Mu, xxxv
Task Scheduler, 408
terminal window, 511–513

workbook, 302
worksheet, 302
write() function (PyAutoGUI), 489
write() method, 216, 224
writerow() method (csv modules), 375

X
XKCD comics

downloading project, 286–291
multithreaded downloader project,

403–406

Z
Zigzag project, 72–74
zipfile module

adding to ZIP files, 239
creating ZIP files, 239
extracting ZIP files, 238
namelist() method, 238
overview, 237
reading ZIP files, 238

ZipFile objects, 238
ZipInfo objects, 238

Automate the Boring Stuff with Python, 2nd Edition is set in New Baskerville,
Futura, Dogma, and TheSansMono Condensed.

RESOURCES
Visit https://nostarch.com/automatestuff2/ for resources, errata, and more information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

PYTHON PLAYGROUND
Geeky Projects for the
Curious Programmer
by mahesh venkitachalam

october 2015, 352 pp., $29.95
isbn 978-1-59327-604-1

SCRATCH PROGRAMMING
PLAYGROUND
Learn to Program by Making Cool Games
by al sweigart

september 2016, 288 pp., $24.95
isbn 978-1-59327-762-8
full color

INVENT YOUR OWN COMPUTER
GAMES WITH PYTHON,
4TH EDITION
by al sweigart

december 2016, 376 pp., $29.95
isbn 978-1-59327-795-6

WICKED COOL SHELL SCRIPTS,
2ND EDITION
101 Scripts for Linux, OS X, and UNIX Systems
by dave taylor and brandon perry

october 2016, 392 pp., $34.95
isbn 978-1-59327-602-7

PYTHON CRASH COURSE,
2ND EDITION
A Hands-On, Project-Based
Introduction to Programming
by eric matthes

may 2019, 544 pp., $39.95
isbn 978-1-59327-928-8

CRACKING CODES WITH PYTHON
An Introduction to Building
and Breaking Ciphers
by al sweigart

january 2018, 416 pp., $29.95
isbn 978-1-59327-822-9

More no-nonsense books from NO STARCH PRESS

P R A C T I C A L P R O G R A M M I N G
F O R T O T A L B E G I N N E R S

A L S W E I G A R T

A U T O M A T E
T H E B O R I N G S T U F F

W I T H P Y T H O N

A U T O M A T E
T H E B O R I N G S T U F F

W I T H P Y T H O N

2 N D E D I T I O N

$39.95 ($53.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

G E T S T U F F D O N E .
L E A R N P Y T H O N .

G E T S T U F F D O N E .
L E A R N P Y T H O N .

C O V E R S P Y T H O N 3 . X

If you’ve ever spent hours renaming files or updating
hundreds of spreadsheet cells, you know how tedious
tasks like these can be. But what if you could have your
computer do them for you?

In this fully revised second edition of Automate the
Boring Stuff with Python, you’ll learn how to use Python
to write programs that do in minutes what would take
you hours to do by hand—no prior programming experi-
ence required. You’ll learn the basics of Python and
explore Python’s rich library of modules for performing
specific tasks, like scraping data off websites, reading
PDF and Word documents, and automating clicking and
typing tasks.

The second edition of this international best-seller
includes a brand-new chapter on input validation,
as well as tutorials on automating Gmail and Google
Sheets, and tips on automatically updating CSV files.
You’ll learn how to create programs that effortlessly
perform useful feats of automation to:

• Search for text in a file or across multiple files

• Create, update, move, and rename files and folders

• Search the web and download online content

• Split, merge, watermark, and encrypt PDFs

• Send email responses and text notifications

• Fill out online forms

Step-by-step instructions walk you through each program,
and updated practice projects at the end of each chapter
challenge you to improve those programs and use your
newfound skills to automate similar tasks.

Don’t spend your time doing work a well-trained monkey
could do. Even if you’ve never written a line of code,
you can make your computer do the grunt work. Learn
how in Automate the Boring Stuff with Python.

A B O U T T H E A U T H O R

Al Sweigart is a professional software developer who
teaches programming to kids and adults. Sweigart
has written several bestselling programming books
for beginners, including Invent Your Own Computer
Games with Python, Cracking Codes with Python, and
Coding with Minecraft (all from No Starch Press).

O V E R 2 0 0 , 0 0 0
C O P I E S S O L D

O V E R 2 0 0 , 0 0 0
C O P I E S S O L D

O V E R 2 0 0 , 0 0 0
C O P I E S S O L D

O V E R 2 0 0 , 0 0 0
C O P I E S S O L D

SHELVE IN:
PROGRAM

M
ING LANGUAGES/

PYTHON

A
U

T
O

M
A

T
E

 T
H

E
 B

O
R

IN
G

S
T

U
F

F
 W

IT
H

 P
Y

T
H

O
N

A
U

T
O

M
A

T
E

 T
H

E
 B

O
R

IN
G

S
T

U
F

F
 W

IT
H

 P
Y

T
H

O
N

S
W

E
IG

A
R

T

2 N D E D I T I O N

	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Whom Is This Book For?
	Conventions
	What Is Programming?
	What Is Python?
	Programmers Don’t Need to Know Much Math
	You Are Not Too Old to Learn Programming
	Programming Is a Creative Activity

	About This Book
	Downloading and Installing Python
	Downloading and Installing Mu
	Starting Mu
	Starting IDLE
	The Interactive Shell
	Installing Third-Party Modules
	How to Find Help
	Asking Smart Programming Questions
	Summary

	Part I: Python Programming Basics
	Chapter 1: Python Basics
	Entering Expressions into the Interactive Shell
	The Integer, Floating-Point, and String Data Types
	String Concatenation and Replication
	Storing Values in Variables
	Assignment Statements
	Variable Names

	Your First Program
	Dissecting Your Program
	Comments
	The print() Function
	The input() Function
	Printing the User’s Name
	The len() Function
	The str(), int(), and float() Functions

	Summary
	Practice Questions

	Chapter 2: Flow Control
	Boolean Values
	Comparison Operators
	Boolean Operators
	Binary Boolean Operators
	The not Operator

	Mixing Boolean and Comparison Operators
	Elements of Flow Control
	Conditions
	Blocks of Code

	Program Execution
	Flow Control Statements
	if Statements
	else Statements
	elif Statements
	while Loop Statements
	break Statements
	continue Statements
	for Loops and the range() Function

	Importing Modules
	from import Statements

	Ending a Program Early with the sys.exit() Function
	A Short Program: Guess the Number
	A Short Program: Rock, Paper, Scissors
	Summary
	Practice Questions

	Chapter 3: Functions
	def Statements with Parameters
	Define, Call, Pass, Argument, Parameter

	Return Values and return Statements
	The None Value
	Keyword Arguments and the print() Function
	The Call Stack
	Local and Global Scope
	Local Variables Cannot Be Used in the Global Scope
	Local Scopes Cannot Use Variables in Other Local Scopes
	Global Variables Can Be Read from a Local Scope
	Local and Global Variables with the Same Name

	The global Statement
	Exception Handling
	A Short Program: Zigzag
	Summary
	Practice Questions
	Practice Projects
	The Collatz Sequence
	Input Validation

	Chapter 4: Lists
	The List Data Type
	Getting Individual Values in a List with Indexes
	Negative Indexes
	Getting a List from Another List with Slices
	Getting a List’s Length with the len() Function
	Changing Values in a List with Indexes
	List Concatenation and List Replication
	Removing Values from Lists with del Statements

	Working with Lists
	Using for Loops with Lists
	The in and not in Operators
	The Multiple Assignment Trick
	Using the enumerate() Function with Lists
	Using the random.choice() and random.shuffle() Functions with Lists

	Augmented Assignment Operators
	Methods
	Finding a Value in a List with the index() Method
	Adding Values to Lists with the append() and insert() Methods
	Removing Values from Lists with the remove() Method
	Sorting the Values in a List with the sort() Method
	Reversing the Values in a List with the reverse() Method

	Example Program: Magic 8 Ball with a List
	Sequence Data Types
	Mutable and Immutable Data Types
	The Tuple Data Type
	Converting Types with the list() and tuple() Functions

	References
	Identity and the id() Function
	Passing References
	The copy Module’s copy() and deepcopy() Functions

	A Short Program: Conway’s Game of Life
	Summary
	Practice Questions
	Practice Projects
	Comma Code
	Coin Flip Streaks
	Character Picture Grid

	Chapter 5: Dictionaries and Structuring Data
	The Dictionary Data Type
	Dictionaries vs. Lists
	The keys(), values(), and items() Methods
	Checking Whether a Key or Value Exists in a Dictionary
	The get() Method
	The setdefault() Method

	Pretty Printing
	Using Data Structures to Model Real-World Things
	A Tic-Tac-Toe Board
	Nested Dictionaries and Lists

	Summary
	Practice Questions
	Practice Projects
	Chess Dictionary Validator
	Fantasy Game Inventory
	List to Dictionary Function for Fantasy Game Inventory

	Chapter 6: Manipulating Strings
	Working with Strings
	String Literals
	Indexing and Slicing Strings
	The in and not in Operators with Strings

	Putting Strings Inside Other Strings
	Useful String Methods
	The upper(), lower(), isupper(), and islower() Methods
	The isX() Methods
	The startswith() and endswith() Methods
	The join() and split() Methods
	Splitting Strings with the partition() Method
	Justifying Text with the rjust(), ljust(), and center() Methods
	Removing Whitespace with the strip(), rstrip(), and lstrip() Methods

	Numeric Values of Characters with the ord() and chr() Functions
	Copying and Pasting Strings with the pyperclip Module
	Project: Multi-Clipboard Automatic Messages
	Step 1: Program Design and Data Structures
	Step 2: Handle Command Line Arguments
	Step 3: Copy the Right Phrase

	Project: Adding Bullets to Wiki Markup
	Step 1: Copy and Paste from the Clipboard
	Step 2: Separate the Lines of Text and Add the Star
	Step 3: Join the Modified Lines

	A Short Progam: Pig Latin
	Summary
	Practice Questions
	Practice Projects
	Table Printer
	Zombie Dice Bots

	Part II: Automating Tasks
	Chapter 7: Pattern Matching with Regular Expressions
	Finding Patterns of Text Without Regular Expressions
	Finding Patterns of Text with Regular Expressions
	Creating Regex Objects
	Matching Regex Objects
	Review of Regular Expression Matching

	More Pattern Matching with Regular Expressions
	Grouping with Parentheses
	Matching Multiple Groups with the Pipe
	Optional Matching with the Question Mark
	Matching Zero or More with the Star
	Matching One or More with the Plus
	Matching Specific Repetitions with Braces

	Greedy and Non-greedy Matching
	The findall() Method
	Character Classes
	Making Your Own Character Classes
	The Caret and Dollar Sign Characters
	The Wildcard Character
	Matching Everything with Dot-Star
	Matching Newlines with the Dot Character

	Review of Regex Symbols
	Case-Insensitive Matching
	Substituting Strings with the sub() Method
	Managing Complex Regexes
	Combining re.IGNORECASE, re.DOTALL, and re.VERBOSE
	Project: Phone Number and Email Address Extractor
	Step 1: Create a Regex for Phone Numbers
	Step 2: Create a Regex for Email Addresses
	Step 3: Find All Matches in the Clipboard Text
	Step 4: Join the Matches into a String for the Clipboard
	Running the Program
	Ideas for Similar Programs

	Summary
	Practice Questions
	Practice Projects
	Date Detection
	Strong Password Detection
	Regex Version of the strip() Method

	Chapter 8: Input Validation
	The PyInputPlus Module
	The min, max, greaterThan, and lessThan Keyword Arguments
	The blank Keyword Argument
	The limit, timeout, and default Keyword Arguments
	The allowRegexes and blockRegexes Keyword Arguments
	Passing a Custom Validation Function to inputCustom()

	Project: How to Keep an Idiot Busy for Hours
	Project: Multiplication Quiz
	Summary
	Practice Questions
	Practice Projects
	Sandwich Maker
	Write Your Own Multiplication Quiz

	Chapter 9: Reading and Writing Files
	Files and File Paths
	Backslash on Windows and Forward Slash on macOS and Linux
	Using the / Operator to Join Paths
	The Current Working Directory
	The Home Directory
	Absolute vs. Relative Paths
	Creating New Folders Using the os.makedirs() Function
	Handling Absolute and Relative Paths
	Getting the Parts of a File Path
	Finding File Sizes and Folder Contents
	Modifying a List of Files Using Glob Patterns
	Checking Path Validity

	The File Reading/Writing Process
	Opening Files with the open() Function
	Reading the Contents of Files
	Writing to Files

	Saving Variables with the shelve Module
	Saving Variables with the pprint.pformat() Function
	Project: Generating Random Quiz Files
	Step 1: Store the Quiz Data in a Dictionary
	Step 2: Create the Quiz File and Shuffle the Question Order
	Step 3: Create the Answer Options
	Step 4: Write Content to the Quiz and Answer Key Files

	Project: Updatable Multi-Clipboard
	Step 1: Comments and Shelf Setup
	Step 2: Save Clipboard Content with a Keyword
	Step 3: List Keywords and Load a Keyword’s Content

	Summary
	Practice Questions
	Practice Projects
	Extending the Multi-Clipboard
	Mad Libs
	Regex Search

	Chapter 10: Organizing Files
	The shutil Module
	Copying Files and Folders
	Moving and Renaming Files and Folders
	Permanently Deleting Files and Folders
	Safe Deletes with the send2trash Module

	Walking a Directory Tree
	Compressing Files with the zipfile Module
	Reading ZIP Files
	Extracting from ZIP Files
	Creating and Adding to ZIP Files

	Project: Renaming Files with American-Style Dates to European-Style Dates
	Step 1: Create a Regex for American-Style Dates
	Step 2: Identify the Date Parts from the Filenames
	Step 3: Form the New Filename and Rename the Files
	Ideas for Similar Programs

	Project: Backing Up a Folder into a ZIP File
	Step 1: Figure Out the ZIP File’s Name
	Step 2: Create the New ZIP File
	Step 3: Walk the Directory Tree and Add to the ZIP File
	Ideas for Similar Programs

	Summary
	Practice Questions
	Practice Projects
	Selective Copy
	Deleting Unneeded Files
	Filling in the Gaps

	Chapter 11: Debugging
	Raising Exceptions
	Getting the Traceback as a String
	Assertions
	Using an Assertion in a Traffic Light Simulation

	Logging
	Using the logging Module
	Don’t Debug with the print() Function
	Logging Levels
	Disabling Logging
	Logging to a File

	Mu’s Debugger
	Continue
	Step In
	Step Over
	Step Out
	Stop
	Debugging a Number Adding Program
	Breakpoints

	Summary
	Practice Questions
	Practice Project
	Debugging Coin Toss

	Chapter 12: Web Scraping
	Project: mapIt.py with the webbrowser Module
	Step 1: Figure Out the URL
	Step 2: Handle the Command Line Arguments
	Step 3: Handle the Clipboard Content and Launch the Browser
	Ideas for Similar Programs

	Downloading Files from the Web with the requests Module
	Downloading a Web Page with the requests.get() Function
	Checking for Errors

	Saving Downloaded Files to the Hard Drive
	HTML
	Resources for Learning HTML
	A Quick Refresher
	Viewing the Source HTML of a Web Page
	Opening Your Browser’s Developer Tools
	Using the Developer Tools to Find HTML Elements

	Parsing HTML with the bs4 Module
	Creating a BeautifulSoup Object from HTML
	Finding an Element with the select() Method
	Getting Data from an Element’s Attributes

	Project: Opening All Search Results
	Step 1: Get the Command Line Arguments and Request the Search Page
	Step 2: Find All the Results
	Step 3: Open Web Browsers for Each Result
	Ideas for Similar Programs

	Project: Downloading All XKCD Comics
	Step 1: Design the Program
	Step 2: Download the Web Page
	Step 3: Find and Download the Comic Image
	Step 4: Save the Image and Find the Previous Comic
	Ideas for Similar Programs

	Controlling the Browser with the selenium Module
	Starting a selenium-Controlled Browser
	Finding Elements on the Page
	Clicking the Page
	Filling Out and Submitting Forms
	Sending Special Keys
	Clicking Browser Buttons
	More Information on Selenium

	Summary
	Practice Questions
	Practice Projects
	Command Line Emailer
	Image Site Downloader
	2048
	Link Verification

	Chapter 13: Working with Excel Spreadsheets
	Excel Documents
	Installing the openpyxl Module
	Reading Excel Documents
	Opening Excel Documents with OpenPyXL
	Getting Sheets from the Workbook
	Getting Cells from the Sheets
	Converting Between Column Letters and Numbers
	Getting Rows and Columns from the Sheets
	Workbooks, Sheets, Cells

	Project: Reading Data from a Spreadsheet
	Step 1: Read the Spreadsheet Data
	Step 2: Populate the Data Structure
	Step 3: Write the Results to a File
	Ideas for Similar Programs

	Writing Excel Documents
	Creating and Saving Excel Documents
	Creating and Removing Sheets
	Writing Values to Cells

	Project: Updating a Spreadsheet
	Step 1: Set Up a Data Structure with the Update Information
	Step 2: Check All Rows and Update Incorrect Prices
	Ideas for Similar Programs

	Setting the Font Style of Cells
	Font Objects
	Formulas
	Adjusting Rows and Columns
	Setting Row Height and Column Width
	Merging and Unmerging Cells
	Freezing Panes

	Charts
	Summary
	Practice Questions
	Practice Projects
	Multiplication Table Maker
	Blank Row Inserter
	Spreadsheet Cell Inverter
	Text Files to Spreadsheet
	Spreadsheet to Text Files

	Chapter 14: Working with Google Sheets
	Installing and Setting Up EZSheets
	Obtaining Credentials and Token Files
	Revoking the Credentials File

	Spreadsheet Objects
	Creating, Uploading, and Listing Spreadsheets
	Spreadsheet Attributes
	Downloading and Uploading Spreadsheets
	Deleting Spreadsheets

	Sheet Objects
	Reading and Writing Data
	Creating and Deleting Sheets
	Copying Sheets

	Working with Google Sheets Quotas
	Summary
	Practice Questions
	Practice Projects
	Downloading Google Forms Data
	Converting Spreadsheets to Other Formats
	Finding Mistakes in a Spreadsheet

	Chapter 15: Working with PDF and Word Documents
	PDF Documents
	Extracting Text from PDFs
	Decrypting PDFs
	Creating PDFs

	Project: Combining Select Pages from Many PDFs
	Step 1: Find All PDF Files
	Step 2: Open Each PDF
	Step 3: Add Each Page
	Step 4: Save the Results
	Ideas for Similar Programs

	Word Documents
	Reading Word Documents
	Getting the Full Text from a .docx File
	Styling Paragraph and Run Objects
	Creating Word Documents with Nondefault Styles
	Run Attributes
	Writing Word Documents
	Adding Headings
	Adding Line and Page Breaks
	Adding Pictures

	Creating PDFs from Word Documents
	Summary
	Practice Questions
	Practice Projects
	PDF Paranoia
	Custom Invitations as Word Documents
	Brute-Force PDF Password Breaker

	Chapter 16: Working with CSV Files and JSON Data
	The csv Module
	reader Objects
	Reading Data from reader Objects in a for Loop
	writer Objects
	The delimiter and lineterminator Keyword Arguments
	DictReader and DictWriter CSV Objects

	Project: Removing the Header from CSV Files
	Step 1: Loop Through Each CSV File
	Step 2: Read in the CSV File
	Step 3: Write Out the CSV File Without the First Row
	Ideas for Similar Programs

	JSON and APIs
	The json Module
	Reading JSON with the loads() Function
	Writing JSON with the dumps() Function

	Project: Fetching Current Weather Data
	Step 1: Get Location from the Command Line Argument
	Step 2: Download the JSON Data
	Step 3: Load JSON Data and Print Weather
	Ideas for Similar Programs

	Summary
	Practice Questions
	Practice Project
	Excel-to-CSV Converter

	Chapter 17: Keeping Time, Scheduling Tasks, and Launching Programs
	The time Module
	The time.time() Function
	The time.sleep() Function

	Rounding Numbers
	Project: Super Stopwatch
	Step 1: Set Up the Program to Track Times
	Step 2: Track and Print Lap Times
	Ideas for Similar Programs

	The datetime Module
	The timedelta Data Type
	Pausing Until a Specific Date
	Converting datetime Objects into Strings
	Converting Strings into datetime Objects

	Review of Python’s Time Functions
	Multithreading
	Passing Arguments to the Thread’s Target Function
	Concurrency Issues

	Project: Multithreaded XKCD Downloader
	Step 1: Modify the Program to Use a Function
	Step 2: Create and Start Threads
	Step 3: Wait for All Threads to End

	Launching Other Programs from Python
	Passing Command Line Arguments to the Popen() Function
	Task Scheduler, launchd, and cron
	Opening Websites with Python
	Running Other Python Scripts
	Opening Files with Default Applications

	Project: Simple Countdown Program
	Step 1: Count Down
	Step 2: Play the Sound File
	Ideas for Similar Programs

	Summary
	Practice Questions
	Practice Projects
	Prettified Stopwatch
	Scheduled Web Comic Downloader

	Chapter 18: Sending Email and Text Messages
	Sending and Receiving Email with the Gmail API
	Enabling the Gmail API
	Sending Mail from a Gmail Account
	Reading Mail from a Gmail Account
	Searching Mail from a Gmail Account
	Downloading Attachments from a Gmail Account

	SMTP
	Sending Email
	Connecting to an SMTP Server
	Sending the SMTP “Hello” Message
	Starting TLS Encryption
	Logging In to the SMTP Server
	Sending an Email
	Disconnecting from the SMTP Server

	IMAP
	Retrieving and Deleting Emails with IMAP
	Connecting to an IMAP Server
	Logging In to the IMAP Server
	Searching for Email
	Fetching an Email and Marking It as Read
	Getting Email Addresses from a Raw Message
	Getting the Body from a Raw Message
	Deleting Emails
	Disconnecting from the IMAP Server

	Project: Sending Member Dues Reminder Emails
	Step 1: Open the Excel File
	Step 2: Find All Unpaid Members
	Step 3: Send Customized Email Reminders

	Sending Text Messages with SMS Email Gateways
	Sending Text Messages with Twilio
	Signing Up for a Twilio Account
	Sending Text Messages

	Project: “Just Text Me” Module
	Summary
	Practice Questions
	Practice Projects
	Random Chore Assignment Emailer
	Umbrella Reminder
	Auto Unsubscriber
	Controlling Your Computer Through Email

	Chapter 19: Manipulating Images
	Computer Image Fundamentals
	Colors and RGBA Values
	Coordinates and Box Tuples

	Manipulating Images with Pillow
	Working with the Image Data Type
	Cropping Images
	Copying and Pasting Images onto Other Images
	Resizing an Image
	Rotating and Flipping Images
	Changing Individual Pixels

	Project: Adding a Logo
	Step 1: Open the Logo Image
	Step 2: Loop Over All Files and Open Images
	Step 3: Resize the Images
	Step 4: Add the Logo and Save the Changes
	Ideas for Similar Programs

	Drawing on Images
	Drawing Shapes
	Drawing Text

	Summary
	Practice Questions
	Practice Projects
	Extending and Fixing the Chapter Project Programs
	Identifying Photo Folders on the Hard Drive
	Custom Seating Cards

	Chapter 20: Controlling the Keyboard and Mouse with GUI Automation
	Installing the pyautogui Module
	Setting Up Accessibility Apps on macOS
	Staying on Track
	Pauses and Fail-Safes
	Shutting Down Everything by Logging Out

	Controlling Mouse Movement
	Moving the Mouse
	Getting the Mouse Position

	Controlling Mouse Interaction
	Clicking the Mouse
	Dragging the Mouse
	Scrolling the Mouse

	Planning Your Mouse Movements
	Working with the Screen
	Getting a Screenshot
	Analyzing the Screenshot

	Image Recognition
	Getting Window Information
	Obtaining the Active Window
	Other Ways of Obtaining Windows
	Manipulating Windows

	Controlling the Keyboard
	Sending a String from the Keyboard
	Key Names
	Pressing and Releasing the Keyboard
	Hotkey Combinations

	Setting Up Your GUI Automation Scripts
	Review of the PyAutoGUI Functions
	Project: Automatic Form Filler
	Step 1: Figure Out the Steps
	Step 2: Set Up Coordinates
	Step 3: Start Typing Data
	Step 4: Handle Select Lists and Radio Buttons
	Step 5: Submit the Form and Wait

	Displaying Message Boxes
	Summary
	Practice Questions
	Practice Projects
	Looking Busy
	Using the Clipboard to Read a Text Field
	Instant Messenger Bot
	Game-Playing Bot Tutorial

	Appendix A: Installing Third-Party Modules
	The pip Tool
	Installing Third-Party Modules
	Installing Modules for the Mu Editor

	Appendix B: Running Programs
	Running Programs from the Terminal Window
	Running Python Programs on Windows
	Running Python Programs on macOS
	Running Python Programs on Ubuntu Linux
	Running Python Programs with Assertions Disabled

	Appendix C: Answers to the Practice Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20

	Index

